TeraByte TokuSampleSort

Bradley C. Kuszmatuil
MIT CSAIL, Tokutek Inc., Cilk Arts Inc., and MIT Lincoln Lab@atories

May 1, 2007

Abstract

Using the tx2500 disk cluster at MIT Lincoln Laboraties, ttedl a terabyte (1% 100-byte records) in 197s using
an “Indy” sort, and in 297s using a “Daytona” sort. | sorted@&®B in one minute using an “Indy” sort and 214GB in
one minute using an “Daytona” sort. The sort employed a fisdmple sort, and ran on 400 nodes, each containing
a 6-disk RAID, and 8GB of memory, all connected by Infinibahemployed TCP sockets to communicate between
the nodes. | used a FUSE module that logically concatendgsddistributed across disks into one large file.

My sort, calledTokuSampleSaremploys a parallel sample sort similar to the one used oersomputers a decade
ago [1]. Borrowing the explanation from [1], the sort worlssfallows:

Assuming n input keys are to be sorted on a machine with p psocg, the algorithm proceeds in three
phases:

1. Asetof p- 1“splitter” keys are picked that partition the linear ordef &ey values into p “buckets.”

2. Based on their values, the keys are sent to the approfviatket, where the ith bucket is stored on
the ith processor.

3. The keys are sorted within each bucket.

Just as in [1], | oversampled, picking 64 randoamdidatekeys per node, sorting the candidates globally, and then
using every 64th candidate as a splitter key.

Unlike the sort of [1], my sort involves I/O. Data starts anmdis on disk, and in the case of the Daytona sort, the
record boundaries are delimited by newlines. (In the caghefndy sort, the records are exactly 100 bytes long.) |
relied on an operating-system modification to allow theeysto view as a single file the concatenation of many files
distributed across many nodes.

The Indy version takes advantage of fact that the recordsGdytes in size, that the sort key is the first 10 bytes,
and that the sort key is random. The Daytona version sortsds®f varying sizes, uses the entire record as a sort key,
and does not rely on the sort key having any particular distion (e.g., it works just as well on nonrandom keys.)

The machine has 3.2TB of main memory total, allowing me tdquar the sort in one I/O pass. The data is read
in, sorted, and written out.

Figure 2 shows how the time was spent by the sorting progrdra tilme breakdown is approximate since different
nodes finished their jobs at different times. The nodes symibed only during the sorting of the sample and the
permutation steps (as well as at the end when reporting ¢daéglsed time.) These measurements exhibited high
variability. For example, | found that the cost of the dis® I¢an vary by 30%, which | suspect is due to the disk
controller retrying 1/0 or the RAID controller compensagifor bad reads.) It is clear that the local sort is far more
expensive for the Daytona than for the Indy, and accountalfopst all of the performance difference. Although the
individual numbers in Figure 2 vary greatly, the overall time varies by only a few percent. One explanation is that
although the read time on any given node may vary by 30%, the for the slowest of the 400 nodes is unlikely to

*This work is sponsored in part by the Department of DefensteuAir Force Contract FA8721-05-C-0002. Opinions, intetations, conclu-
sions, and recommendations are those of the author and tamecessarily endorsed by the United States Governmerg.\ildrk is also sponsored
in part by NSF grants CCP-0621511 and CCF-0541209.

Daytona Indy
Minute 214GB 264GB
TeraByte 297s 197

O

Figure 1: Overall elapsed time including launch, sort, flusling data to disk, and shutting down the job for
TokuSampleSort.

Phase Minute TeraByte
Daytona Indy Daytona Indy

Startup 43s 4.3s 43s 9.7s
Read 5.0s 10.0s 30.0s 37.ls
SortSample 6.8s 5.5s 20.7s 44]ls
Bucketize 3.8s 44s 13.9s 14.0s
Permute 99s 12.2s 459s 46.4s
LocalSort 21.7s 5.5s 138.9s 23.9s
Output 4.2s 2.0s 27.4s 11.6s
Fsync 0.0s 7.2s 0.0s 0.0s

Figure 2: Time breakdown by algorithm phase. The time breakawn is approximate, since the various nodes
finished their tasks at different times. The Startup step estblishes the TCP sockets between each pair of the
400 nodes. The Read step reads each node’s data into main mamorlhe SortSample step selects candidates,
sorts them, and broadcasts the splitter keys. The Bucketizstep divides each node’s data into buckets. The
Permute step performs an all-to-all communication, sendig the data from Node j’s ith bucket to Nodei, for all

i and j. The LocalSort step sorts each node’s received data. The Quit step writes the sorted data to disk. The
Fsync step flushes data to disk.

vary by much. There is some evidence to support this theorya@ingle run, the read time varies across processes,
but the SortSample step finishes at about the same time oy ewde. Hence the variability is likely to be in the
assignment of time to phases rather than the actual perfarenaf the system. In particular, most of the variability in
startup times is probably a measurement artifact.

I experienced some difficulty ensuring that the data wasnttache, especially for the minute sort. The main
memory on the nodes is large enough to hold the 300GB inpat skt the 300GB output data set, and the two
additional in-memory copies used by the sorting algorititrance, on every run | had to take steps to force the input
data out of the cache so that the disk I/0O would actually tdkeey | tried a second consecutive run without the
intermediate cache flush, and it runs about 5s to 10s fastehéoMinute sort, and can run up to 25s faster for the
Terabyte sort. Here | report numbers for the case where ttleecaas flushed before starting.

Unlike the Penny Sort benchmark, the Terabyte sort bendha@es not require that the input and output data
appear to be one file to the operating system. Instead théyferaort rules allow the file to be broken up into many
files, that when concatenated contain the correct data. Myoagh was to divide the terabyte file into 400 files, each
of size 2.5GB, and to put each file on the local filesystem ohglsinode. At the end of the sort, there are 400 files
(of slightly varying sizes), that when concatenated contfa¢ sorted data. Initially, only the input files exist. (T
any output files from previous runs are deleted before thestaris.) Although one could imagine that preallocating
the output file would save time, that preallocation actusltyvs down the performance. So even if the rules allowed
preallocation, | would not do it.

Although it was not required, Andy Funk (of MIT Lincoln Labaid | built a file system that allows us to view the
400 files as a single files. | employed the Linux FUSE file systemdule [2] to produce a file system in which files
that are distributed across nodes can be accessed as aftntfleough the OS interface. | used two different FUSE
modules:SSHFS andCATFS.

The SSHFS FUSE module [3] mounts a remote file system locally using tBél File Transfer Protocol. This
allowed us to mount 400 files from 400 different nodes withegjuiring us to configure NFS mounting of 400 nodes.

Module lines characters semicolons
Parallel sort 434 12904 283
Daytona quicksort 59 1503 a4
Indy quicksort 123 3179 74
TCP socket management 371 11379 268
Logging and instrumentation 92 2156 46

Figure 3: The code size for TokuSampleSort. | counted the nutmer of lines, the number of characters, and the
number of semicolons. The parallel sort module implementshte code specific to parallel sorting. Two different
quicksort modules are implemented for the Daytona and Indy poblems. The TCP socket management module
implements functionality such as all-to-all communication and computing the sum of values from every node.
The logging and instrumentation module provides logging ad measures where time is spent. The code is
written in C.

Andy Funk and | implemented tHeATFS FUSE module for this project. Th@ATFS (concatenation file system)
logically concatenates files together. Conceptually, wienOS requests a read of thhk byte of the concatenated
file, the CATFS module looks at the sizes of all the individual files and rethésproper byte from the proper file. The
CATFS module is 264 lines of code.

It is not clear why thd sync() operation at the end sometimes takes 0s and sometimes t&sesThe daytona
verion usegwrite(), whereas the Indy versionusas te() .

To verify the sort | performed a

LC ALL=C sort -c

on the catted output file. | also checked to make sure thayegeord (looking at bytes 10—20) appeared in the output
exactly once, and that for each record, bytes 20-100 wereapgiven bytes 10-20. (Recall that bytes 10-20 are the
sequence number in the input order, and that bytes 20-10beeaomputed from bytes 10-20.)

Elapsed cpu times were measured usingtitree command-line interface. The program reported times foheac
substep usinget t i meof day() .

| used TCP sockets running infiniband instead of MPI. Firshplemented an MPI version, but | had perfor-
mance difficulties. The MPI implementation took over 60s &form anMl _i nit (), and over 30s to perform
MPI finalize(). Solbuilta TCP version. It is possible that | configured MRbng.

I measured the performance on the MIT Lincoln Labs (MIT-LXx2500 disk cluster, which comprises 400 nodes,
each of which is a dual-socket hyperthreaded Intel Xeon B2®ith 8GB of memory and 6 local disk drives or-
ganized as a RAID 5. Thus there are 1600 hardware threadxtsrda the 800 processors distributed among the
400 nodes. The nodes are connected using Infiniband and nux LThe tx2500 went online around April 1, 2007,
and | was given exclusive access to the system whenever edaeduring April. MIT-LL paid about $1.9M for
the hardware, however Dell contributed significant costisiga The estimated value of the tx2500 is about $5.5M.
The MIT-LL team and | encountered many problems, includantirfg disks, crashing nodes, failing RAID controller
batteries, and system configuration issues. Whenever lueteed hardware or software problems, the MIT-LLs
personnel resolved the problems immediately. This levsugiport from Lincoln Labs was exceptional.

| plan to web-publish this software under the GPL sometiménguMay 2007.

Acknowledgments

Jeremy Kepner at MIT-LL provided me with access to the tx258bert Reuther at MIT-LL helped me get started
using the tx2500. Pete Michaleas at MIT-LL kept the tx250fitare and system software working. Andy Funk at
MIT-LL helped build the FUSE module.

References

[1] Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs@teg Plaxton, Stephen J. Smith, and M. Zagha. An
experimental analysis of parallel sorting algorithriifieory of Computing Systen®i (2):135-167, March/April
1998.

[2] Filesystem in userspace (fusé}.t p: // f use. sour cef or ge. net, 2006.

[3] Ssh file systemhttp://fuse. sourceforge. net/sshfs. htnl, 2006.

