
psort, yet another fast stable external sorting software

Paolo Bertasi, Marco Bressan and Enoch Peserico

Dept. of Information Engineering, Univ. Padova, Italy

May 25, 2008

Abstract

psort is a fast, stable external sorting software available as a binary executable that can sort
a disk file interpreted as a sequence of r byte records according to a key of k bytes starting
from the ith byte of each record. psort is also available under GPL as a C library, allowing one
to define one’s own key comparison functions, as well as key preprocessing and postprocessing
functions to increase the efficiency of comparisons. psort can sort 108 · 224 = 1, 811, 939, 328
records of 100 bytes each, according to an initial 10 byte random key, on a 392.78 U.S. dollar
desktop machine in less than 2408.6766 ≤

3·365·24·3600

39278
seconds - i.e. for less than 1 penny

according to the Pennysort Daytona Benchmark. A version of psort hand optimized for the
Pennysort (Indy) Benchmark can sort a slightly larger input file of 113 · 224 = 1, 895, 825, 408
byte records on the same machine in the same time.

1 psort

psort is a fast, stable comparison-based external sorting software available under GPL either as
a binary executable (with source code) or as a C library. Subsection 1.1 details its architecture;
Subsection 1.2 details its interface.

1.1 Architecture

psort exploits a classic two-pass sorting algorithm. In the first pass, the file is split into runs slightly
smaller than the main memory size; each run is sorted and written to disk in an intermediate file.
This file can be the original file, or a newly created one. In the second pass, runs are merged into
a single sorted file. This file must be different from the intermediate file, but, again, it can be the
original file. Obviously, if the file fits entirely in the main memory, only the first pass is used.

We now analyze the first pass in greater detail. psort uses direct mapped, asynchronous I/O to
move data between disk and userspace, interleaving computation with data transfers. Read/write
buffers should be sufficiently large to amortize the disk head movement and rotation cost and yet
sufficiently small to leave enough space to sort large (and therefore few) runs - which is critical to
reach high speed in the second pass (see below). The size of the buffers can be specified manually
by the user; otherwise psort allocates to them 10% of the total available memory, with a minimum
of 16MB per buffer.

From the read buffer data is separated between keys and payloads. Keys are preprocessed so
that they can then be compared using integer arithmetic. Microruns of keys and payloads are then
sorted using MergeSort (the initial pass actually sorts sequences of 4 items with SelectionSort). We

1

chose MergeSort because it is simple, deterministic, and both efficient and predictable in terms of
cache behavior. Microrun size can be specified by the user; otherwise, psort computes the size of
a microrun (in terms of items) as the square root (rounded up to the nearest power of two) of the
number of items in a full run. Ideally, microruns should be approximately the size of the processor
cache, so that this phase of the first pass only requires, for each item, a read and a write access to
the main memory buffer, and yet microruns are as large (and thus as few) as possible. Microruns
are then merged using a k−way merge-tree into a single sorted run that is directly written to the
output buffer (with records being restored to their original form with the key embedded into the
payload). Ideally, the data in the k−way merge-tree should also fit entirely in cache; the default
choice of microrun size attempts to balance it with the size of the merge-tree. psort includes an
optional cache-refresh mechanism to prevent the stream of payloads from polluting the cache; this
option is turned off by default since in most cases its cost outweighs its benefit.

The second pass is simpler. Runs are read (again using asynchronous, direct-mapped I/O) into
a read buffer of contiguously allocated userspace memory; from there they are moved into sort
buffers, one for each run, that can dynamically grow and shrink. They are then merged using a
k−way merge tree and written to a write buffer - and from there to disk. Obviously, one can fit
only a small fraction of each run into main memory at the same time. This means that, unlike
the first pass which involves long sequential reads and writes, the second pass still involves long
sequential writes, but rather short reads. This, in turn, means more time lost positioning the disk
head, and a lower effective disk bandwidth.

psort uses sort buffers whose size varies dynamically to store data from first pass runs. Each
buffer is formed by a number of microbuffers. As records enter the sorted output sequence, they
are removed from the microbuffers. As soon as a microbuffer is emptied, it can be recycled for
other purposes, effectively reducing the size of the buffer. When the amount of data in a buffer
falls below a certain threshold (chosen as a user option) the buffer is ”refilled” from the appropriate
run. In theory, if data were consumed uniformly from all n runs, one could divide the total available
buffer space B in such a way that a newly refilled buffer holds ≈

n

n2+n
2B ≈ 2B/n bytes of data,

the previously refilled one n−1

n2+n
2B, and so on. This allows reads of about twice the size achievable

with static buffers of size B/n. This approach can be highly ineffective, however, if data are not
consumed uniformly, and in particular if they are consumed more rapidly from recently refilled
buffers. For this reason, psort allows one to specify the geometry of the buffer space as a parameter
g between 0 and 1, where 1 + g specifies the ratio between the maximum buffer size and the buffer
size B/n in the presence of static buffers. Then, each run is always guaranteed a minimum buffer
of size (1 − g)B/n. The default value of g is 0.5.

1.2 Interface

psort is written in C and is available both as a full fledged binary executable and as a C library. The
C library allows one to provide one’s own comparison functions in addition to the default one (that
treat keys as strings of characters). Also, it allows one to provide preprocessing and postprocessing
functions that transform (and, reverse the transformation of) the key into a form more amenable
to comparisons using the CPUs integer arithmetic. For example, the 10 byte key of the Pennysort
Benchmark is transformed into a pair of (padded) 8 byte integers. Finally, this allows one to use
separately the code for the first and second pass of the software.

The executable allows the user to specify the file to sort, interpreted as a sequence of r byte
records with a key of k bytes starting from the ith byte of each record. It also allows the user to

2

specify where the temporary file and final file should be located (including whether one of them
overlaps with the original file). Finally, the executable allows the knowledgeable user to tinker with
a number of parameters of the sorting code, including microrun size, second pass buffer geometry
etc. (see subsection 1.1, above).

2 Pennysort

We tested psort using the Pennysort Benchmark. Subsection 2.1 provides the details of the our
hardware and OS. Subsection 2.2 provides the actual results of our tests. Guided by our results,
we tried to improve the performance of psort by tailoring it to the benchmark and to the specific
architecture. The performance of this “indy” version of psort is also detailed in subsection 2.2.

2.1 Hardware

We attempted to acquire a hardware platform that would deliver the maximum performance at
the minimum cost. This was done not only to achieve a good performance of psort under the
Pennysort Benchmark, but also to understand what are the bottlenecks in today’s PC architectures
for tasks dealing with large amounts of data that are both CPU and I/O intensive. Our choice
for a motherboard was an ASRock ALive NF6P-VSTA with an Nvidia nForce 430 Southbridge -
an inexpensive but high performance “Linux friendly” motherboard which supports 4 SATA 3.0Gb
channels, for a maximum aggregated traffic of over 420MB/s. We paired it with 4 Western Digital
WD1600AAJS hard drives, which can individually deliver an whopping 100MB/s peak read/write
rate for extremely large sequential reads/writes on the outer rim of the disk. We configured them
with GNU/Linux (Gentoo) “vanilla” software RAID. As a filesystem, we tested XFS, JFS, ReiserFS
and ext3FS. The best performers where XFS and JFS (with the former outperforming the latter
by an almost negligible amount). In both cases the CPU (see below) usage to saturate the disk
transfer rate was negligible - less than 3%. Thus, we finally settled for XFS. The best performance
was achieved with a stripe size of 128KB. Note that this is a very “disk heavy” PC, with about
half the total cost being taken by the 4 disks.

RAM choice must take into account three parameters: size, speed and price. A RAM that is
twice as large approximately (in fact, more than) doubles the size of runs in the first pass. This,
in turn allows reads that are four times as long during the second pass. Of course, memory today
is only available in sizes that are powers of 2. It turned out that the best compromise was 2GB.
RAM speed is another important parameter. PC4200 RAM is about a dozen times faster than
the southern bridge in theory. In practice, we found that accessing RAM can have a large number
of “hidden” costs - e.g. due TLB lookups and to the fact that it is accessed in whole “cache
lines”. Even just two or three read+write passes can consume the majority of the available RAM
bandwidth, and it is extremely difficult to coax the compiler to overlap RAM to cache transfers
with processor operations. In practice, it turned out that even using 2 banks of OCZ 800MHz
PC6400 RAM with CAS 4 latency almost half the “CPU” time taken during the first pass was
spent accessing the RAM.

The choice of the actual processor strongly depends on that of the other components - probably
more than on the “number crunching” power of the CPU itself. In particular we chose a cheap,
single core Athlon LE running at 2.4Ghz, with 128KB of L1 cache and 1MB of L2 cache. The
total cost of the hardware at NewEgg.com on May 19th 2008 was 357.78 $. Under the Pennysort

3

Figure 1: Hardware costs

formula, adding the mandatory 35$ “assembly fee”, this allowed us a total time budget of slightly
more than 2408.6766 seconds.

2.2 The actual test

We tested psort on the hardware described above, compiling it with gcc with the flags -O3 -m64

-msse2 -mtune=k8 -march=k8 -funroll-loops -mfpmath=sse -funsafe-loop-optimizations

-B /usr/share/libhugetlbfs/ -Wl,--hugetlbfs-link=B. We positioned the input file on an ap-
propriately sized partition on the outer rim of the disks, overwrote it during the first pass, and
created the output file in a second partition during the second pass. The first pass was slightly lim-
ited by the CPU, or, more correctly, by the combination of CPU and RAM. More expensive CPUs
did not yield sufficient increases in performance to justify their use. The second pass was entirely
limited by the disks. psort (using 216 record Mergesort and a 28-way merger-tree, 50MB read/write
buffers, overwriting the initial file with the intermediate file) sorted 108·224 = 1, 811, 939, 328 records
taking less than 2405 seconds. We then manually “retooled” psort into an “indy” version adapted
solely for the Pennysort benchmark (eliminating unnecessary “general purpose sorting” code, man-
ually unrolling loops etc.). This yielded a small, but observable gain in performance. psort indy
managed to sort 113 · 224 = 1, 895, 825, 408 records in less than 2407 seconds.

It is interesting to compare our results with the prediction of 10 years ago by Gray et al.
(http://www.rrsd.com/psort/ms/ps.htm) that price-performance would double yearly for the next
10 years, yielding 1.50TB for 1 penny by 2008. Instead, price-performance has “only” increased
by slightly over two orders of magnitude, i.e. a factor of about 1.6/year (almost exactly matching
Moore’s Law).

4

Newegg.com - Once You Know, You Newegg http://secure.newegg.com/Shopping/ShoppingCartPrintVersion.aspx

1 of 2 19/05/2008 14:06

Shopping Cart Print

Qty. Product Description Savings Total Price

1 Rosewill RCW-305 6" /Serial ATA I, II 5.25" Male to 15P Serial ATA Female
Power Adapter Cable /Multi-Color - Retail
Item #: N82E16812119024
Return Policy: Standard Return Policy

$0.99

3 OKGEAR 36" SATA II cable Model GC36AKM22 - Retail
Item #: N82E16812123174
Return Policy: Standard Return Policy

$5.97

($1.99 each)

1 Nippon Labs 4-Pin PC power to 2 x SATA Converter Cables Model
POW-SATA-2 - Retail
Item #: N82E16812816015
Return Policy: Standard Return Policy

$1.89

1 Linkworld 3230-09-C2222U Black Steel ATX Mid Tower Computer Case 430W
Power Supply - Retail
Item #: N82E16811164092
Return Policy: Standard Return Policy

$25.99

4 Western Digital Caviar SE WD1600AAJS 160GB 7200 RPM SATA 3.0Gb/s
Hard Drive - OEM
Item #: N82E16822136075
Return Policy: Limited 30-Day Return Policy

Select An Optional Extended Warranty PlanSelect An Optional Extended Warranty Plan

$179.96

($44.99 each)

1 ASRock ALiveNF6P-VSTA AM2+/AM2 NVIDIA GeForce 6150SE / nForce 430
Micro ATX AMD Motherboard - Retail
Item #: N82E16813157125
Return Policy: Limited 30-Day Return Policy

Select An Optional Extended Warranty PlanSelect An Optional Extended Warranty Plan

$49.99

1 OCZ Platinum Revision 2 2GB (2 x 1GB) 240-Pin DDR2 SDRAM DDR2 800
(PC2 6400) Dual Channel Kit Desktop Memory Model OCZ2P800R22GK -
Retail
Item #: N82E16820227139
Return Policy: Memory (Modules, USB) Return Policy

Select An Optional Extended Warranty PlanSelect An Optional Extended Warranty Plan

$47.99

1 AMD Athlon 64 LE-1620 2.4GHz Socket AM2 45W Single-Core Processor
Model ADH1620DHBOX - Retail
Item #: N82E16819103198
Return Policy: Processors (CPUs) Return Policy

Select An Optional Extended Warranty PlanSelect An Optional Extended Warranty Plan

$45.00

Subtotal: $357.78

Calculate Shipping

Zip Code: 02108 UPS Guaranteed 3 Day Service -- $44.67UPS Guaranteed 3 Day Service -- $44.67
Shipping: $44.67

Redeem Gift Certificates

Claim Code:
Security Code:

Gift
Certificates:

$0.00

Apply Promo Code Promo
Code: $0.00

Figure 2: The NewEgg.com shopping cart for our hardware, not including the 35$ “assembly fee”.
5

