
OzSort 2.0: Sorting up to 252GB for a Penny

Nikolas Askitis
Software Developer and Consultant

Department of Computer Science and Software Engineering,
The University of Melbourne.

naskitis@unimelb.edu.au
askitisn@gmail.com

March 30, 2010

Abstract
We present OzSort 2.0, a stable external merge sort software optimized for the requirements of Pen-
nySort Indy 2010. OzSort 2.0 is engineered to better exploit multi-core processors over its predecessor,
and to further minimize cache misses. In this paper, we explain the workings of OzSort 2.0 and show
how we sorted up to 252GB (2 516 582 400 records) for a Penny (< 1929s) using standard desktop PC
components.

1 Introduction
OzSort 2.0 is based upon the classic external merge sort (1) which has two main stages: stage 1, sorting
and stage 2, merging. Stage 1 simply breaks a dataset into homogeneous runs which are then sorted and
written back out to disk. Depending on the number of records, the last run could be partially empty. Stage
2 then takes these sorted runs and merges them to create one completed sorted file.

OzSort 2.0 is catered for the Indy benchmark category. The Indy benchmark assumes 100 byte record
sizes and that each record begins with a 10 byte record key, followed by 90 bytes of payload data. Indy
also allows us to overwrite the input file with runs, which is beneficial with respect to performance. The
total disk space required by Indy OzSort 2.0 is therefore 2NL, where N is the number of records and L
is the homogeneous length of the records. The Daytona benchmark category, on the other hand, does not
allow the original input file to be overwritten and assumes that the user will specify the record size, the key
size, and the key offset within the record (among other constraints). As such, the total space required by
Daytona is 3NL.

OzSort 2.0 is a 64-bit native program, meaning that it should only be used on a 64-bit computing
architecture, though from experience, some older 32-bit processors (such as a Pentium IV) with 64-bit
emulation are also compatible — though not recommended. In the following sections, we describe how
we designed OzSort 2.0 and the choices we made with hardware, in order to maximize performance while
minimizing overall system cost.

2 The sort phase (stage 1)
Our 2009 sorting phase involved the following steps:

1. Wait until we read a 2GB unsorted run from disk.

2. Break the run in half and spawn two threads to process each half in parallel.

(a) The two threads scan their 1GB portion, generating a set of 128-bit integer keys that represent
the first 10 bytes of each record (the primary key), plus the record offset. The set of keys are
then sorting using a customized iterative in-place quick sort routine.

3. Wait until both threads complete then merge the two 1GB portions together, writing the smallest key
to an output buffer. Two homogeneous output buffers were employed, such that, when the first filled
and was being written to disk, the second could continue accepting records from the merger.

4. While we are sorting, merging, and writing the run, a third thread words in the background partially
prefetching the next run.

Generating 2GB runs in this manner is efficient with respect to sorting, since smaller runs can generally
be sorted quicker than larger runs. However, this approach is not scalable. Thus, we require a sorting
algorithm that can handle larger runs while remaining computationally efficient, and one that can exploit
current multi-core architectures to further accelerate performance. Our research lead to the implementation
of a simple yet effective algorithm shown below, that is used by OzSort 2.0:

1. A run consists of 225 records (about 3.35GB), which will reduce the number of runs generated,
improving scalability.

2. Break the run into 25 homogeneous fragments called microruns. Each microrun will thereby have
exactly 220 records (and assuming the last run is fully occupied).

3. Read the next microrun from disk (or initially the first). On completion, immediately spawn a de-
tached thread to process the microrun. Repeat this step until you have read in and spawned threads
for 25 microruns. Note: threads should be detached to minimize memory consumption (join-able
threads can increase the overall process size considerably when several are spawned and/or remain
idle).

4. Each thread will work in the background generating a set of 128-bit integer keys for its assigned
microrun, then sorting the set using a customized iterative in-place quick sort routine (an improved
version from last year that is more computationally efficient).

5. We wait until all threads finish, then access the smallest 128-bit integer key from each microrun
and store it into a sorted heap called a merge heap, which has a maximum capacity of 25 entries
— each entry can store up to 192-bits (the 128-bit key following by its associated 64-bit microrun
number).

6. Conduct a 25-way merge using the merge heap as follows:

(a) Extract the smallest key (and its associated microrun number) from the heap.

(b) Copy the extracted key into the next vacant slot in an array called ptr set. The ptr set has a
capacity equal to the output buffer.

(c) Store into the sorted heap the next smallest (128-bit) key from the associated microrun, or
reduce the heap size by one if the mircorun is exhausted.

(d) Repeat the above two steps until the ptr set becomes full, in which case, we iterate through
its keys and transfer the associated records to the output buffer. This step is implemented
in a manner that reduces cache misses while prompting better use of out-of-order execution,
compiler optimizations, and the instruction pipeline.

(e) Repeat the previous steps until the merge heap is exhausted.

7. Repeat from Step 3 until the input file is exhausted, completing stage 1.

An abstract representation of this algorithm is illustrated in Figure 1. There are several key features of this
algorithm which have an advantage over last years approach. Dividing a run into a set 25 of microruns
makes good use multi-core architectures, since it allows sorting to overlap disk I/O more effectively. A
value of 25 microruns was found to offer a good compromise between sort time and merge time. Increasing
the number of microruns improved sorting performance (up to a point), but it increased the time required
to merge the microruns together.

2

3.35 GB Unsorted
 Run

Merger

Sorted heap of
smallest keys

Thread 1:

Generate set of
128-bit primary keys
Sort primary
Signal completion

Async Output Buffer 1

Async Output Buffer 2

Thread 2:

Generate set of
128-bit primary keys
Sort primary
Signal completion

Thread 3:

Generate set of
128-bit primary keys
Sort primary
Signal completion

Thread 4:

Generate set of
128-bit primary keys
Sort primary
Signal completion

Microrun 1

Microrun 2

Microrun 3

Microrun 4

Figure 1: An abstract representation of the sort phase (stage 1), where a run is divided (as it is read from
disk) into four homogeneous microruns (for example), which are processed independently and merged
together to form a sorted run. This is a simple but practical algorithm that makes good use of current
multi-core computing architectures.

3

Another key feature was HugeTLB, which we did not employ in our 2009 solution. With HugeTLB
enabled, we can reduce the number of TLB misses incurred, thereby accelerating performance. Indeed, we
observed a considerable improvement in the performance of OzSort 2.0 as a result. We include results with
and without HugeTLB for comparison, later in this document.

The use of a ptr set, as described in the algorithm above, was another important feature not consid-
ered in our 2009 submission. Transferring a record to an output buffer involves a random access to main
memory, which will most likely incur a L2 cache miss, a TLB miss or both. By employing the ptr set
as described, we can hide some of the memory latency incurred by stimulating the hardware to transfer
multiple records at once. In addition, we further promote parallelism by spawning a single join-able thread
to transfer a (carefully selected) portion of the prt set in the background.

We also experimented with the output buffer size (the maximum number of records it can store before
it is written out to disk) and observed that a size of 717 440 records yielded near-optimal performance,
probably due to better hardware/page alignment. We note, however, that we did not consider a dynamic
output buffer which may insight further improvements in performance, since the inner, middle and outer
regions of a conventional disk typically offer different (increasing) data bandwidths.

3 The merge phase (stage 2)
Stage 2 is presented with a series of 3.35GB sorted runs. Similar to stage 1, stage 2 breaks a run into a set
of homogeneous microruns, containing 219 records. It then proceeds with the following steps:

1. Read in the first microrun from the first run into memory.

2. Generate a 128-bit integer representation of the primary key of the first record in the microrun.

3. Store the 128-bit key into a sorted heap (the sorted heap has a capacity equal to the number of runs),
along with its associated microrun number.

4. Read in the next microrun from the next run, and label it as the current microrun.

(a) Generate a 128-bit key representation of the primary key of first record in the current microrun.

(b) Store the 128-bit key into the sorted heap, along with its microrun number.

5. Repeat from step 4 until all microruns have been read into memory (overlapping I/O with computa-
tion).

6. Extract the smallest key from the sorted heap, along with its associated microrun number.

7. Fetch the required record from the microrun and transfer it to the output buffer (one of two output
buffers, as implemented in stage 1; if the first buffer fills and is being written to disk, the second can
continue accepting keys from the heap).

8. Fetch the next record from the associated microrun, generate its 128-bit integer key and store it into
the sorted heap. If the microrun is exhausted, we fetch the next microrun from the associated run.
Otherwise, the run is exhausted, in which case, we reduce the size of the heap by one.

9. Repeat step 6 until the sorted heap is exhausted, in which case, we flush out any remaining entries in
the output buffers, completing stage 2.

The merge phase implemented for OzSort 2.0 is similar to approach used last year, except for some
important changes. In our 2009 model, we employed a threaded prefetching mechanism to fetch the next
set of microruns that will be accessed by the sorted heap into a prefetch buffer. The motivation was to
try to hide some of the I/O seek costs incurred by fetching the next set of microruns from disk while the
current are being processed. This approach worked, but the gains were small. First, reads and writes were
interleaved on a single RAID drive, which hindered the effectiveness of prefetching — the operating system
had to schedule multiple disk read and write commands, forcing the disk head to move more frequently.

4

Employing two RAID drives, one for reading microruns and the other for writing, would be a better but
expensive option. Second, in order to allocate a prefetch buffer of sufficient size, we must reduce the
microrun size. As a consequence, the number of seeks will increase which will hinder overall performance.
As such, for OzSort 2.0, we eliminated the prefetch mechanism altogether, which allowed us to employ
much larger microruns, thereby reducing the total number of seeks made.

Our 2009 model used the strncmp() routine to keep the heap sorted, which is simpler but computation-
ally expensive. Hence, another key improvement in OzSort 2.0 is the use of fast in-place integer sorting
(128-bit primary keys) to maintain the heap in sort order.

The employment of HugeTLB was another advantage over our previous design, as it can further ac-
celerate performance due to a reduction of TLB misses. However, the performance benefits offered by
HugeTLB during stage 2 were not as substantial as stage 1. Stage 1 conducts more localized memory
accesses as it sorts microruns. This means that more TLB pages are likely to be reused, prompting better
HugeTLB utilization. When we extract the smallest key from the heap in stage 2, however, we issue a
random access to a large allocated portion of main memory to fetch the required record (once), which can
greatly reduce access locality.

Note, however, that unlike in stage 1, in stage 2, the smallest key/record extracted from the sorted heap
is immediately transferred to an output buffer. That is, we do not employ a ptr set array, as we had described
in stage 1. A ptr set array did not yield notable performance gains when employed in stage 2, probably due
to the increased cost of writing to disk as a result of reduced I/O access locality, which masked the benefits.

4 The system software
OzSort 2.0 was written in C and compiled using g++ version 4.4.3 with HugeTLB enabled, using the
command: g++ -ansi -pedantic -Wall -B /usr/local/share/libhugetlbfs/
-Wl,--hugetlbfs-align -O3 -fomit-frame-pointer -o ozsort ozsort.c -lrt.
We experimented with other compiler optimization options such as -march, but performance did not
differ significantly from just using the -O3 flag which is consistent to our results last year. We also tried
the Intel icc compiler for Linux, but observed no notable improvement in performance (with respect to
OzSort) against the standard g++ compiler.

We initially developed the software using Linux Kubuntu 9.10 which was easy to install and of-
fered a high performance development environment. However, we encountered difficulties when we en-
abled HugeTLB, since we needed to reserve at least 1946 2MB pages using the command hugeadm
--pool-pages-min 2MB:1946. With Kubuntu installed on a 4GB RAM machine, the most we could
reserve was less than 1900 pages (after stopping most operating system services and running the O/S in
console mode). Unfortunately, this was not sufficient to run OzSort 2.0 with HugeTLB enabled.

We were thus forced to install and configure Linux Gentoo which has a rather complicated, somewhat
frustrating and time-consuming installation procedure. The plus side, however, is that Gentoo offers a lot
more control over system services and configuration, and provides a fast and importantly, memory-efficient
environment that was tuned for our system. Indeed, with Gentoo finally up and running, we were able to
reserve up to 1950 2MB pages successfully.

4.1 Linux Kernel
In order to reserve at least 1946 2MB HugeTLB pages, we needed to configure and compile a custom Linux
Kernel that was as small as possible while not compromising performance (using Gentoo source, Linux
Kernel 2.6.31-gentoo-r6 SMP x86 64). The smaller the Kernel, the more memory becomes available for
allocation by the user. After several trials, we eventually found a Linux Kernel configuration that produced
a compressed bzImage file (the Kernel image file) of just 1.3MB (a typical size can be almost 5MB
compressed). The .config file can be provided upon request, allowing you to reconstruct our Linux
Gentoo Kernel (one tuned for the 2010 AMD AsRock MicroATX motherboard or equivalent).

5

4.2 File system
The XFS file system is well known to offer good I/O performance for large files (in some cases, XFS can
approach the raw bandwidth offered by the hard drives). Although there are several other file systems
available, XFS is generally the best option for this application, when used on a compiled Gentoo system.
On Kubuntu 9.10, however, we found the JFS file system to be superior. On Gentoo (perhaps due to the
fact that the system was compiled/tuned for our hardware), the performance of JFS was found to be slightly
slower than XFS. We thus strongly recommend that you format a RAID drive using XFS (default settings
are fine), if you intend to reproduce our results. On a standard Kubuntu system, on the other hand, we
recommend the JFS filesystem (default settings).

4.3 RAID chunk size
We decided to set the raid chunk size to 256KB (set using the mdadm version 3.0.1), which is also the
maximum block size supported by the current default XFS file system. We also tested 64KB and 128KB
but did not notice any significant change in overall performance. We therefore recommend a chunk size of
256KB which was observed to work well with OzSort 2.0.

5 The hardware
Fortunately, we were able to re-use some of our hardware components from our 2009 entry. Our AsRock
A780GM motherboard and our Seagate 7200.11 160GB SATA-II drives were still listed on newegg.com at
the time of writing. The motherboard was available for the same price (excluding discounts) as last year
and our hard drives were $2 cheaper — a welcomed reduction in price considering that the RAID forms
the most expensive component of our system.

5.1 Hard drives
The 7200.12 Seagate 160GB drives were also available from newegg.com this year and were only $1
more expensive than the 7200.11 drives. We purchased one 7200.12 drive and tested it against one of our
7200.11 drives. Physically, the drives looked identical (apart from the different version/serial numbers on
the drive label). We hypothesized that we would observe a marginal improvement in performance over our
7200.11 drive, though after some initial testing, we observed that this was not the case. Using the com-
mand: dd if=/dev/md0 of=/dev/null iflag=direct bs=1024000000 count=10, the
7200.12 was actually a little slower, offering a peak (outer-rim) throughput of about 114MB/s compared
to the 126MB/s offered by our 7200.11 drive. We are thus confident that our 7200.11 drives still offer
competitive performance at a budget price.

5.2 Memory
Last year, we purchased 4GB of high performance 5-5-5-15 GeIL Black Dragon DDR2 800 RAM valued
at $37.99. This year, we purchased another set of 4GB (2x2GB) of GeIL 5-5-5-15 Black Dragon series
memory, since they are high performance units, but more importantly, they were the cheapest 4GB CAS-5
RAM units available at the time of writing. Nonetheless, their cost was $72.99, $35 more than last year.
The cost of memory in general has risen considerably since early last year. One advantage of this years
GeIL memory, however, is that it operates at 1066Mhz, giving us a small but welcomed performance boost.
We initially developed the software by reusing our 4GB G. Skill (NT model) DDR2 800Mhz memory,
which was available on newegg.com for $76.99. However, we later replaced the unit with the cheaper and
faster GeIL series. We did not consider low-latency DDR2 RAM modules this year (4-4-4-12 timings),
since we know though preliminary trials that their performance gains generally do not compensate for their
cost. However, if budget is not of constraint, we recommend employing 4-4-4-12 DDR2 800/1066 RAM
modules, since we observed a notable improvement in the performance, particularly during stage 1.

6

5.3 Computer case
We were able to purchase a MircoATX computer case with a 400W power pack (that offered — among the
standard power ports — two sata-power ports) from newegg.com at the start of the year, for only $19.99.
Given our knowledge with JouleSort, we know that a 400W power pack will provide ample power for our
needs. The computer case, however, did present us with an interesting assembly challenge — since the
case is somewhat smaller than a typical ATX-style computer case and we had 6 Seagate drives to squeeze
in. Nonetheless, this setup proved adequate for PennySort.

5.4 Processor
The AMD Athlon 64 X2 2.7Ghz Kuma processor that we used last year is now obsolete (so is the AMD
Athlon 64 LE-1640 used in JouleSort). As such, we purchased a new CPU which fortunately was available
at a cheap price, though still not cheap enough to compensate for the high price of memory.

The AMD Athlon II 2.8Ghz 240 processor was available for $56.99, $3 dollars cheaper than our 2009
Kuma processor. In addition, the AMD 240 processor offered slightly faster clock speeds, a larger L2
cache per core and a faster FSB speed. As a plus, the AMD Athlon II 240 operates at a 65W, which is
considerably cooler than Kuma.

OzSort 2.0 was initially developed using a AMD Phenom II X2 545 3.0Ghz processor with 7MB of
shared cache. The 545 is obviously a more powerful processor than the 240, but its performance could not
compensate for its high cost. Stage 1 was notably faster, but its performance during stage 2 was no better
than the 240. These results are consistent with last year, where we observed that the single core AMD
Athlon 64 LE-1640 rivaled the more powerful Kuma processor during stage 2.

5.5 Motherboard
We also purchased a new AsRock MicroATX motherboard listed on newegg.com (at the time of writing)
— the AsRock A785GM-LE/128MB. This motherboard is the improved version of the A780GM that we
used last year, offering a more powerful BIOS, upgraded chipsets, and native support for the AMD Athlon
II X2 and AMD Phenom II X3/X4 processors (the A780GM does not provide native support for these
processors; a BIOS update was required which is both risky and generally not as optimal as hardware
specifically designed to support these processors). Physically, the motherboards looked very similar, with
only minor changes to the south-bridge heatsink, the on-board labeling, and chip layout, etc.

However, unlike the A780GM, the A785GM-LE/128MB offered 128MB of side-port memory which
is beneficial, since it eliminates the need for reserving 32MB (min.) of main memory for the on-board
graphics card. The extra 32MB of memory allowed us to increase the output buffer size to the near-optimal
value (on our machine) of 717 440 records, and also to allocate 1946+ 2MB HugeTLB pages. This, in turn,
compensated for its more expensive price tag of $64.99 ($5 more than the A780GM).

We initially developed the software on a Gigabyte MA790X-UD4P motherboard which employs the
AMD750 south-bridge chipset and 8 SATA-II ports. This motherboard, however, does not have an onboard
graphics card so a temporary NVIDIA Geforce card (PCI-E) was used. It is a full-ATX motherboard
and thus offers more expansion capabilities than the AsRock motherboards that we have used. It also
worked well under Linux, though we did encounter initial problems when we booted the machine as it kept
freezing during the BIOS/system initialization step of “Verifying DMI pool data ...”. We resolved this issue
by updating the BIOS and ensuring that the bootable drive had its boot partition flagged as bootable, and
that its MBR was set by the lilo boot loader. We did not encounter any of these issues with the AsRock
motherboards, which worked flawlessly.

In addition, we found the AsRock motherboards offered a more user-friendly BIOS than the Gigabyte,
and also required fewer device drivers to be installed into the Linux Kernel, allowing us to further shrink
the Kernel size without compromising performance. In all, although the Gigabyte board is a quality board,
the AsRock A785GM-LE was a better choice for our purposes, and was also observed (though preliminary
trials) to be notably faster during stage 2.

We also considered the BioStar A760G motherboard, shown in our Appendix, since it offered 6 SATA-
II ports and was available for only $55.99 — $9 dollars cheaper than our AsRock which increases the

7

Device Qty Price (USD) Qty × Total
price cost (USD)

AsRock MicroATX A785GM-LE/128M 1 64.99 64.99
AMD Athlon II X2 240 2.8Ghz 65W 1 56.99 56.99
GeIL Black Dragon 4GB DDR2 1066Mhz CAS-5 1 72.99 72.99
Seagate Barracuda 7200.11 160GB SATA-II 6 37.99 227.94
400W MircoATX Case 1 19.99 19.99
SATA-II data cable 5 1.79 8.95
Power splitter 1-to-2 2 1.79 3.58
Assembly fee 1 35 35

$490.43

Table 1: The PC components used to assemble our 2010 PennySort machine; prices are based on
newegg.com between January 2010 and March 2010 and do not include any discounts. Screen shots are
provided in the Appendix for your viewing.

time budget by about 36 seconds. However, it does not offer native support for the AMD Athlon II series
processors (a bios upgrade is required). Furthermore, it is not a particularly well-known motherboard
compared to other popular brands such as Asus and AsRock, which will likely be an issue with Linux with
respect to system stability and performance. Moreover, a key issue with this motherboard is that it offers
no sideport memory, and so, it must reserve a minimum of 32MB of memory for its on-board graphics
card. We know from our AsRock A780GM motherboard (which is a better built unit), that this reduction
in total memory capacity will impose a upper-limit of about 1932 2MB HugeTLB pages. This is sufficient
for stage 1, which can operate efficiently with only 1932 HugeTLB pages, but stage 2 requires slightly
more memory — about 1946 HugeTLB pages. As a result, we would be forced to reduce the output buffer
size, the microrun size, or both, in order to allow stage 2 to operate with only 1932 HugeTLB pages. On
our A780GM motherboard, this action resulted in a notable decline in performance, mostly offsetting the
36 second budget gain. Hence, in conclusion, our AsRock A780GM/128MB motherboard was found to
be a better and faster option, despite being a more expensive one. This is an interesting example of where
sometimes, it is not always the cheapest (modern) hardware options that will yield the best budget vs. speed
balance.

6 PennySort Results
The choice of hardware is a key aspect of this benchmark. The components we used for our final assembled
PC are shown in Table 1. The time budget calculated for PennySort is shown in Table 2, and the results in
Table 3. The time shown represents the total wall time required to execute the software, captured using the
standard Linux time command. The time shown was averaged over 10 runs, the standard deviation of which
was low. After each run, the RAID drive was unmounted, reformatted and remounted; main memory was
also flushed with random data, to help ensure a consistent initial state between runs. After extensive testing
on different hardware, we are confident that you should be able to reproduce our results on a machine with
similar specifications and software. The output of Valsort is shown below:

root@ozsort:˜$ valsort dataset.sorted;
Sort complete, now validating ...
Records: 2516582400
Checksum: 4b0029a671cb9034
Duplicate keys: 0
SUCCESS - all records are in order

8

Total cost (USD) 490.43 dollars
Total cost in pennies 49043 cents
Penny sort life time (60×60×24×365×3) = 94608000 seconds
Penny sort budget 94608000÷49043 = 1929.08 seconds

Table 2: The 2010 OzSort 2.0 PennySort budget calculated using the component costs shown in Table 1.

HugeTLB Stage 1 Stage 2 Total time Budget
state sec sec sec sec
on 934.85 992.13 1926.98 1929.08
off 1003.97 996.91 2000.88 1929.08

Table 3: The total wall time (in seconds) required by OzSort 2.0 for Indy PennySort 2010, with and with
out HugeTLB. The results shown are the average taken from 10 runs; the standard deviation was low. After
each run, the 6-disk RAID drive was unmounted, reformatted, then remounted.

7 Conclusion
OzSort2.0 is a re-engineered version of last years OzSort software — a fast and stable external sorting
application that is designed for the requirements of the PennySort (Indy) benchmark. OzSort 2.0 is a
more scalable and efficient sorting solution, sorting up to 252GB of data for a Penny using standard PC
components. Although this is a gain of only around 6GB from last year (as a result of high memory
prices), it was accomplished in markedly less time (1927s compared to 2150s). OzSort 2.0 can also offer
competitive performance on a system without HugeTLB (which is common), sorting the same amount of
data in about 2000s — only 73s longer. Hence, given a conservatively larger time budget, OzSort 2.0 can
readily scale to much larger datasets – sorting over 300GB for a Penny is within range.

References
[1] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1. third edition, 1997.

9

Appendix B: BIOS configurations

7.1 BIOS configurations
We spent some time to explore the wealth of options provided by the AsRock BIOS. We first loaded the
default BIOS settings, then updated the following:

OC Tweaker menu:
CPU Configuration:

Overclock Mode: Auto
CPU Active Core Control: All Cores
HT Bus Speed: x10 2000Mhz
HT Bus Width: 16 Bit
Memory Clock: 533Mhz (DDR2 1066)
Memory Timing:

Power Down Enable: Disabled
CAS Latency (CL): 5CLK
TRCD: 5CLK
TRP: 5CLK
TRAS: 15CLK

SidePort Clock Speed: Auto

Advanced menu:
CPU Configuration:

Cool ’n’ Quiet: Disabled
Secure Virtual Machine: Disabled
L3 Cache Allocation: All Cores

Chipset Configuration:
OnBoard HD Audio: Disabled
OnBoard Lan: Enabled
Primary Graphics Adapter: Onboard
Internal Graphics Mode: SIDEPORT

Storage Configuration:
Onboard SATA Controller: Enabled
SATA Operation Mode: AHCI

Floppy Configuration:
Floppy A: Disabled

SuperIO Configuration:
OnBoard Floppy Controller: Disabled

H/W Monitor menu:
CPU Quiet Fan: Disabled

10

Appendix C: Processor specifications
root@ozsort:˜$ cat /proc/cpuinfo
processor : 0
vendor_id : AuthenticAMD
cpu family : 16
model : 6
model name : AMD Athlon(tm) II X2 240 Processor
stepping : 2
cpu MHz : 2800.246
cache size : 1024 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 5
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8
apic sep mtrr pge mca cmov pat pse36 clflush mmx
fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb
rdtscp lm 3dnowext 3dnow constant_tsc rep_good
nonstop_tsc extd_apicid pni monitor cx16 popcnt
lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a
misalignsse 3dnowprefetch osvw ibs skinit wdt
bogomips : 5600.48
TLB size : 1024 4K pages
clflush size : 64
cache_alignment : 64
address sizes : 48 bits physical, 48 bits virtual
power management: ts ttp tm stc 100mhzsteps hwpstate

processor : 1
vendor_id : AuthenticAMD
cpu family : 16
model : 6
model name : AMD Athlon(tm) II X2 240 Processor
stepping : 2
cpu MHz : 2800.246
cache size : 1024 KB
physical id : 0
siblings : 2
core id : 1
cpu cores : 2
apicid : 1
initial apicid : 1
fpu : yes
fpu_exception : yes
cpuid level : 5
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8
apic sep mtrr pge mca cmov pat pse36 clflush mmx
fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb
rdtscp lm 3dnowext 3dnow constant_tsc rep_good
nonstop_tsc extd_apicid pni monitor cx16 popcnt

11

lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a
misalignsse 3dnowprefetch osvw ibs skinit wdt
bogomips : 5600.16
TLB size : 1024 4K pages
clflush size : 64
cache_alignment : 64
address sizes : 48 bits physical, 48 bits virtual
power management: ts ttp tm stc 100mhzsteps hwpstate

Appendix D: Available memory
The total available memory, as reported by our Gentoo Linux operating system.

root@ozsort:˜$ cat /proc/meminfo
MemTotal: 4060440 kB
MemFree: 33992 kB
Buffers: 0 kB
Cached: 15728 kB
SwapCached: 0 kB
Active: 4668 kB
Inactive: 13356 kB
Active(anon): 1484 kB
Inactive(anon): 996 kB
Active(file): 3184 kB
Inactive(file): 12360 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 4 kB
Writeback: 0 kB
AnonPages: 2340 kB
Mapped: 1104 kB
Slab: 4792 kB
SReclaimable: 1256 kB
SUnreclaim: 3536 kB
PageTables: 512 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 33420 kB
Committed_AS: 5216 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 6244 kB
VmallocChunk: 34359731987 kB
HugePages_Total: 1950
HugePages_Free: 1950
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 4736 kB
DirectMap2M: 2091008 kB
DirectMap1G: 2097152 kB

12

Appendix E: Setting up the software RAID and HugeTLB
To aid in reproducing our results, we have provided a screen-shot of our partitions below using the Linux
command “fdisk -l”. Your partition sizes can vary and the operating system can be kept on a separate disk
if you prefer. In fact, we found that keeping the O/S on a separate disk proved to be a simple and convenient
option during the initial development and testing phase, as it allowed for greater simplicity and flexibility
in raid construction and testing. It also made it easier to move the raid drives between different machines,
and it reduced the threat of losing the operating system and data due to partitioning/formatting errors, or
damage caused by transit).

General rule-of-thumb: make sure the partitions used for the raid are of the same size and start at
the same cylinder. Although software raid offers a lot of flexibility with regards to partition sizes and
positions, maintaining uniform partition sizes/locations and the same brand/size disks can help improve
overall performance. Also, you should always start your Linux raid partition from the first cylinder in each
disk (which is usually the outer-rim, as was in our case).

Disk /dev/sda: 160.0 GB, 160041885696 bytes
255 heads, 63 sectors/track, 19457 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x000265b7

Device Boot Start End Blocks Id System
/dev/sda1 1 18630 149645443+ fd Linux raid autodetect
/dev/sda2 * 18631 18646 128520 83 Linux
/dev/sda3 18647 18778 1060290 82 Linux swap / Solaris
/dev/sda4 18779 19457 5454067+ 83 Linux

Disk /dev/sdb: 160.0 GB, 160041885696 bytes
255 heads, 63 sectors/track, 19457 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0xace7b1b4

Device Boot Start End Blocks Id System
/dev/sdb1 1 18630 149645443+ fd Linux raid autodetect

Disk /dev/sdc: 160.0 GB, 160041885696 bytes
255 heads, 63 sectors/track, 19457 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x5492c744

Device Boot Start End Blocks Id System
/dev/sdc1 1 18630 149645443+ 83 Linux raid autodetect

Disk /dev/sdd: 160.0 GB, 160041885696 bytes
255 heads, 63 sectors/track, 19457 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x3cb500c0

Device Boot Start End Blocks Id System
/dev/sdd1 1 18630 149645443+ fd Linux raid autodetect

Disk /dev/sde: 160.0 GB, 160041885696 bytes
255 heads, 63 sectors/track, 19457 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x000234d8

Device Boot Start End Blocks Id System
/dev/sde1 1 18630 149645443+ fd Linux raid autodetect

13

Disk /dev/sdf: 160.0 GB, 160041885696 bytes
255 heads, 63 sectors/track, 19457 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x707b6276

Device Boot Start End Blocks Id System
/dev/sdf1 1 18630 149645443+ 83 Linux raid autodetect

To generate the software raid, enter the following command:

./mdadm -create /dev/md0 -level=0 -chunk=256 -raid-devices=6
/dev/sda1 /dev/sdb1 /dev/sdc1 /dev/sdd1 /dev/sde1 /dev/sdf1;

Then type:
./mkfs.xfs -f /dev/md0

mkdir /mnt/raid;

Once done, open /etc/fstab and add the following line:

/dev/md0 /mnt/raid xfs users,async,exec,rw,dev,noatime,nodiratime,noauto 0 0

You should now be able to mount your raid:
mount /mnt/raid;

Our 6-disk RAID-0 setup offered a peak bandwidth (outer-rim) of 695MB/s, as
reported by the following command:
dd if=/dev/md0 of=/dev/null iflag=direct bs=1024000000 count=5;

To setup HugeTLB, type the following (assuming your system
is HugeTLB ready):

export HUGETLB_MORECORE=yes
mkdir -p /mnt/hugetlbfs
mount -t hugetlbfs none /mnt/hugetlbfs
hugeadm --add-temp-swap --pool-pages-min 2MB:1950

Appendix F: Custom Kernel size
A considerable amount of effort went into shrinking the Kernel (without compromising performance) to
allow more memory to be allocatable to OzSort 2.0. The configuration file used is available upon request;
asrock-tiny was the Kernel image used for the experiments. The others shown were some original test cases
(note their size). bzImageOriginal for example, was the original image Kernel compiled from the default
Kernel configuration file.

root@ozsort:˜$ ls -al /boot
total 28849
drwxr-xr-x 3 root root 1024 Feb 22 21:53 .
drwxr-xr-x 18 root root 4096 Feb 16 18:24 ..
-rw-r--r-- 1 root root 0 Jan 21 12:33 .keep
-rw-r--r-- 1 root root 0 Feb 13 2020 .keep_sys-boot_lilo-0
-rw------- 1 root root 174592 Feb 19 08:58 .map
-rw-r--r-- 1 root root 1867776 Feb 20 09:10 asrock
-rw-r--r-- 1 root root 1566336 Feb 20 11:22 asrock-exp-sp

14

-rw-r--r-- 1 root root 1388928 Feb 20 11:06 asrock-exp-sz
-rw-r--r-- 1 root root 1632992 Feb 20 10:35 asrock-opt
-rw-r--r-- 1 root root 1447904 Feb 20 10:29 asrock-smaller
-rw-r--r-- 1 root root 1367488 Feb 22 21:49 asrock-tiny
lrwxrwxrwx 1 root root 1 Feb 13 2020 boot -> .
-rw-r--r-- 1 root root 512 Feb 16 23:02 boot.0800
-rw-r--r-- 1 root root 512 Feb 13 2020 boot.0840
-rw-r--r-- 1 root root 512 Feb 19 08:56 boot.0860
-rw-r--r-- 1 root root 2653632 Feb 13 2020 bzImageCustom
-rw-r--r-- 1 root root 4920032 Feb 13 2020 bzImageOriginal
drwx------ 2 root root 12288 Feb 13 08:16 lost+found
-rw------- 1 root root 109568 Feb 22 21:53 map

15

Appendix G: Screenshots
We have provided three screenshots of the components used for this competition, all of which were listed
at the time of writing on www.newegg.com.

16

Fi
gu

re
2:

A
pp

en
di

x
G

1:
C

om
po

ne
nt

pr
ic

es
of

P
C

pa
rt

s
@

N
ew

eg
g.

co
m

on
21

st
Fe

b
20

10
.

17

Fi
gu

re
3:

A
pp

en
di

x
G

2:
C

om
po

ne
nt

pr
ic

e
of

P
C

pa
rt

@
N

ew
eg

g
on

15
th

Ja
n

20
10

.

18

Fi
gu

re
4:

A
pp

en
di

x
G

3:
C

om
po

ne
nt

pr
ic

es
of

P
C

pa
rt

s
@

N
ew

eg
g

on
20

th
M

ar
20

10
.

19

