
FAWNSort: Energy-efficient Sorting of 10GB

Padmanabhan Pillai, Michael Kaminsky, Vijay Vasudevan, Lawrence Tan
Michael A. Kozuch David Andersen

Intel Labs Pittsburgh Carnegie Mellon University

1 Introduction

In this document, we describe our submission for the 2011
10GB JouleSort competition. Our system consists of a ma-
chine with a low-power desktop processor and seven flash
drives, sorting the 10GB dataset in 15.55 seconds (±0.03s)
seconds with an average power of 92.0W (±0.57W). This
system sorts the 10GB dataset using only 1430 Joules (±9.9
J), providing 69944 (±489) sorted records per Joule. This
improves energy used by 36% and sorted records per Joule
by 56% when compared to the winning 2010 Daytona/Indy
entry.

Our entry for the 10GB competition tries to use the most
energy-efficient platform we could find that could hold the
dataset in memory to enable a one-pass sort. This is the same
approach taken in our 2010 entry, but with new, faster sys-
tem components and drives. We decided to use a one-pass
sort on this hardware over a two-pass sort on more energy
efficient hardware (such as Intel Atom-based boards) after
experimenting with several energy efficient hardware plat-
forms that were unable to address enough memory to hold
the 10GB dataset in memory. The low-power platforms we
tested suffered from either a lack of I/O capability or high,
relative fixed power costs, both stemming from design deci-
sions made by hardware vendors rather than being informed
by fundamental properties of energy and computing.

2 Hardware

Our system uses an Intel R© CoreTM i5-2400S, a 2.5 GHz
quad-core processor (no hyperthreading, but TurboBoost-
enabled) paired with 16GB of DDR3-1333 DRAM (4x 4GB
DIMMS). The mainboard, a Gigabyte GA-H67A-UD3H-B3
based on the Intel R© H67 chipset, provides 2x 6-Gb/s SATA,
3x 3-Gb/s SATA, and 1x eSATA ports.

We use the built-in processor graphics, and use the x16
PCIe slot for a HighPoint RocketRAID 640 card that pro-
vides an additional 4x 6-Gb/s SATA ports. As this slot con-
nects directly to the processor, this configuration can allow
the system to exceed the 20Gb/s theoretical limit of the DMI
v2 bus, which connects all of the other slots and ports in the
system. Unfortunately, the low-cost RAID card has its own
internal bandwidth bottlenecks, and can only provide close

to full bandwidth from two of its SATA ports.
For storage, we use 7 SATA-based Intel R© 510 series

SSDs, each with 120 GiB capacity. We connect 5 to the on-
board SATA ports, and two to the RAID card. These drives
are rated at 450 MB/s sequential read, and 200 MB/s sequen-
tial writes. We were able to achieve this in practice when the
drives are connected to the onboard 6-Gb/s SATA ports. The
3-Gb/s SATA ports limit read speed to around 250 MB/s,
while the RAID-card ports limit reads to about 375 MB/s.
Full write speed was achieved on all of the ports.

Rounding out the hardware, we use an Antec EarthWatts
380W ATX power supply. This is a Bronze 80 Plus rated
power supply, but it is unlikely that our very low power draw
(typically <100W) is in the high-efficiency range of the sup-
ply. Our system is placed on a desk in an office/cubicle envi-
ronment (not mounted in a chassis). For cooling, the power
supply has an internal fan, and we use the stock heatsink and
fan that comes with the retail cpu package. These provide
sufficient cooling for sustained operation of all components
at load in the 68–72o F ambient office air.

We use a stock configuration in the BIOS, only chang-
ing the boot options, and enabling AHCI rather than legacy
IDE mode for the onboard SATA ports. In particular, no
overclocking, voltage tweaking, or fan control options were
modified.

2.1 System price and power

All of the hardware components are commercially available
and were purchased through online retailers (Amazon and
Newegg). The motherboard ($140), processor ($200), mem-
ory (4x$40), and powersupply ($45) total $545. The RAID
card ($180) and SSDs (7x$315) add another $2385. The to-
tal system price is under $3000, and is dominated by the
flash storage components.

The total power consumption of the system peaks at about
100 W during some of the sort runs, but averages only 92 W
during our best configured experiments. In other CPU-heavy
tests, we see power dissipation as high as 107 W. The proces-
sor itself is rated at 65W TDP, including the built-in graphics
pipelines, but in practice, we do not see power consumptions
that high. Our system, including all 7 disks idles at about
46.5 W. Of this, about 6 W is due to the RAID controller.

1

nsort -processes=3 -memory=1500M
-method=radix
-format=size:100
-field=name:key,size:10,off:0,character
-key=key
-statistics
-file_system=/raid0,direct,

transfer_size:576K,count:30
-out_file=/raid1/output,direct,

transfer_size:28M,count:30
/raid0/inputdata

Figure 1: NSort Parameters Used

3 Software
All of our results are using Ubuntu Linux version 10.10 with
its default kernel version 2.6.35. We only needed to compile
and install a kernel module to enable the RAID controller
card. We use a small partition on one drive formatted as ext4
as the OS/boot partition. For the main data storage, we cre-
ate software RAID-0 sets across all of the drives (configuring
the RAID controller to simply show the raw drives), with
64KB chunk size and formatted with XFS. Because Linux
uses each of the partitions in a RAID set equally, and we get
very different read bandwidth from drives on the different
SATA ports, we experimented with adding an extra partition
on the drives connected to the two fastest ports (9 partitions
total on the 7 drives) to maximize read throughput. As the
write throughput is drive limited, all of the SATA ports look
alike, so a simple RAID set of 7 partitions on the 7 drives
maximizes wrtie speed. We will show results with and with-
out this read speed tweak.

We use the provided gensort utility to create the 108

100-byte records and use the provided valsort to vali-
date our final output file. For the actual sorting, we use a
trial version of NSort software (http://www.ordinal.
com) with the parameters shown in Figure 1. We note
that the transfer size for reads is set to the stripe set size
(9*64=576KB, or 7*64=448KB, depending on the RAID
configuration used). Also note that the runs never actully
fully utilized all 4 cores, loading the system to around 300%.
We are therefore able to tell Nsort to only use 3 threads with-
out hurting performance, while obtaining very modest (0–
2%) improvements to total energy.

Similar to previous entries that used NSort to compete for
JouleSort [1, 2], we meet the 2011 designation for the Day-
tona category because NSort is a general sort software pack-
age.

4 Measurement
We measure the energy consumption during our sort experi-
ment using a WattsUp Pro .NET power meter ([3]) specified
as accurate to within 0.1%. We connect the power meter

to our test machine using the onboard USB interface and
use publicly available software for the power meter to log
the power readings once per second. For each run, our ex-
ecution script first starts the logging software, waits a few
seconds for power measurements to start appearing in the
log file, then runs the nsort command, waits for the sort to
complete, and then terminates the power logging. The script
inserts sort start and end messages into the power log file, so
correlating the correct power measurements with the exper-
iment is not a problem. Our script uses /usr/bin/time
to measure and report the actual runtime of NSort.

Using the logs, we calculate the energy consumed by av-
eraging the power values that are measured once per second
over the duration of the run and multiplying that average
power by the runtime reported by /usr/bin/time. We
have to be careful in computing the average power over a
run, since the initial and final 1-second power measurement
intervals may only have the sort benchmarking running for
parts of the intervals. We compute average power by dis-
carding the two lowest power measurements of the relevant
measurements intervals. For example, for our 15.6s exper-
iment, we use the highest 14 values to average the power,
ignoring the two lowest (i.e., first and last) values of the 16
pertinent entries. We use this calculated average power and
multiply by the actual runtime of the experiment to calculate
the total number of joules.

5 Results

Our results are summarized in the tables below. We first use
the simple 7-disk RAID-0 configuration for the input and
output files.

Time (s) Power (W) Energy (J) SRecs/J
Run 1 16.00 91.4 1462.4 68381
Run 2 16.01 92.1 1474.1 67838
Run 3 16.00 92.1 1474.1 67836
Run 4 16.05 91.8 1473.9 67846
Run 5 16.01 92.4 1478.6 67633
Run 6 15.93 92.6 1475.0 67796
Avg 16.00 92.1 1473.0 67888.4
Error 0.04 0.42 5.49 254.28

The statistics reported by Nsort during these runs indicate
around 285% CPU utilization, 1700 MB/s, and 6.0s for the
read phase, and 295% CPU utilization, 1060 MB/s, and 9.5s
for write phase. /usr/bin/time reports 0.5–0.6s longer
total run time than Nsort itself. As mentioned above, we use
the reported number from /usr/bin/time to calculate
the duration of the sort.

We next consider the read bandwidth optimized version,
which takes advantage of the fact that the drives connected to
the onboard 6-Gb/s SATA ports can produce nearly twice the
read rate as those on the 3-Gb/s ports. We use a 9-partition
RAID-0 set that puts an extra partition on each of these faster

2

http://www.ordinal.com
http://www.ordinal.com

drives to hold the input data. As write performance is bal-
anced, we use the 7-partition RAID-0 set used previously for
the output file.

Time (s) Power (W) Energy (J) SRecs/J
Run 1 15.53 92.1 1429.8 69942
Run 2 15.53 90.9 1410.9 70877
Run 3 15.53 92.4 1434.9 69693
Run 4 15.54 92.2 1433.1 69778
Run 5 15.55 92.0 1430.4 69912
Run 6 15.60 92.3 1439.7 69461
Avg 15.55 92.0 1429.8 69943.7
Error 0.03 0.57 9.91 488.85

The statistics reported by Nsort during these runs indicate
around 315% CPU utilization, 1900 MB/s, and 5.5s for the
read phase, and 295% CPU utilization, 1060 MB/s, and 9.5s
for write phase. Here, too, /usr/bin/time reports 0.5–
0.6s longer total run time than Nsort itself.

Our system improves upon the April 2010 Daytona and
Indy winner by 36% in terms of energy, and 56% in terms of
records sorted per Joule.

Acknowledgments
We would like thank Phil Gibbons and Guy Blelloc for their
insightful discussions on sorting and potential bottlenecks.

References
[1] J. D. Davis and S. Rivoire. Building energy-efficient systems

for sequential workloads. Technical Report MSR-TR-2010-30,
Microsoft Research, Mar. 2010.

[2] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis.
JouleSort: A balanced energy-efficient benchmark. In Proc.
ACM SIGMOD, Beijing, China, June 2007.

[3] WattsUp. .NET Power Meter. http://wattsupmeters.
com.

3

http://wattsupmeters.com
http://wattsupmeters.com

	Introduction
	Hardware
	System price and power

	Software
	Measurement
	Results

