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ABSTRACT
We take sorting of large data sets as case study for mak-
ing data-intensive applications more energy-efficient. Using
a low power processor, solid state disks, and efficient algo-
rithms, we beat the current records in the JouleSort bench-
mark for 10 GB to 1 TB of data by factors of up to 5.1. Since
we also use parallel processing, this usually comes without
a performance penalty.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
Systems; E.5 [Files]: Sorting and searching

General Terms
Algorithms, Design, Experimentation, Measurement, Per-
formance

Keywords
Algorithm Engineering, SortBenchmark, Benchmark, En-
ergy Efficiency, Power, Sort, Solid State Disk, Intel Atom

1. INTRODUCTION
Computers (and their cooling devices) have become a major
factor in the consumption of electrical energy. Also, battery
lifetime is the main limiting factor for many applications
of mobile devices. Hence, reducing energy consumption of
computers is now an important economical and environmen-
tal goal.

While this has fundamentally changed the way chips are
designed, there is much less work on adapting the entire
system, consisting of the hardware and the software run-
ning on it. A notable exception is the JouleSort benchmark
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introduced by Rivoire et al. [17] in 2007. JouleSort is a
new category to the well-established Sort Benchmark1, in-
troduced by Turing award winner Jim Gray in 1985. As in
the other categories of Sort Benchmark, the task is to sort
100-byte records containing a 10-byte key. There are two
classes to participate in, the highly tuned Indy class (only
needs to sort the Sort Benchmark record type and may use
prior knowledge about the key distribution) and the more
general Daytona class (needs to be able to sort general in-
puts without significant loss of performance). Orthogonal
to the class, there are many categories, featuring different
input sizes and metrics.

In the JouleSort category, the goal is to sort the input in
as little energy as possible. The result is stated as sorted
records per Joule. There are three size scales — 108, 109,
and 1010 records, corresponding to 10 GB, 100 GB, and 1 TB
of data.2 We believe that JouleSort is an interesting frame-
work for research in designing energy-efficient systems, since
the sorting problem is at the same time non-trivial, simple to
state, and of fundamental importance in many applications.

In this paper, we reconsider the design choices made in [17]
and come to considerably different solutions, leading to a
factor of up to 5.1 better performance per Joule. Instead
of a large number of laptop disks, now, a small number
of solid state disks (SSDs) wins. Instead of an ordinary
(mobile) PC processor, we go down one scale on the ladder of
processor categories and use the Intel Atom processor, which
is designed for mobile devices and home servers. It turns
out that using parallelism, this does not imply significantly
longer running times.3

Section 2 explains our hardware choices, Section 3 the algo-
rithms used in our programs, and Section 4 the implemen-
tation details. Then, Section 5 evaluates the performance of
our approach with focus on the JouleSort benchmark. We
conclude in Section 6.

Related Work
Rivoire et al. introduce JouleSort in [17], giving excellent ar-
guments on why energy-efficient sorting is interesting. With

1http://sortbenchmark.org
2In this paper as in the Sort Benchmark regulations,
1 GB = 109 bytes, 1 TB = 1012 bytes, and in addition
1 MiB = 220 bytes, 1 GiB = 230 bytes.
3We do have longer running time in the 1 TB scale, but we
will explain that this is a very special case.

http://sortbenchmark.org


CoolSort, they present a highly efficient machine based on
laptop technology, including a large number of 2.5” disks.
This system is an order of magnitude more energy-efficient
than systems currently used for database servers [3]. It uses
the commercial Nsort [14] program in the Daytona class.
In their conclusion, they already predict that flash mem-
ory will play a role in future JouleSort records. However,
in [18], they report on several experiments including sys-
tems with SSDs and low power processors, none of which
beats CoolSort. Only in the Jan 1 2010 Sort Benchmark
results, they improve the 108 record Daytona result signif-
icantly, by factor of 2.1 with FlashSort [7]. Before, there
was only a minuscule improvement in the Indy 109 scale by
OzSort in 2009 [20].

Andersen et al. [3] propose to build a Fast Array of Wimpy
Nodes (FAWN) for fast server-style computing that uses
ARM processors and flash memory storage. It would be
interesting to run the 10 GB JouleSort on one node of such
a machine. Using FAWN for the larger inputs would be dif-
ficult since JouleSort requires input and output to be in a
single file, and running a high performance distributed file
system on FAWN sounds challenging. Moreover, FAWN uses
Ethernet for communication between the nodes. It is not
clear to us whether this is very energy-efficient for large net-
works, once one scales to a large number of nodes, because
of the high bisection bandwidth required for the 1 TB Joule-
Sort.

MapReduce has become a popular approach to large scale
data processing. Its energy efficiency is considered in [6]
where it is pointed out that optimizing the sorting phase
inside the system is crucial for energy efficiency.

Lang and Patel [13] show how reducing clock frequencies
helps to reduce the energy consumption of database queries
(TPC-H style). We go one step further and propose to use
low-clock rate processors optimized for energy efficiency.

2. HARDWARE CHOICE
Hardware components are usually most energy-efficient
when they are fully loaded with necessary work. Usually, it
is not useful to slow down operation artificially on a given de-
vice, because the energy savings do not outweigh the longer
operation time, due to the idle power consumption, which
may include underutilized peripheral components. Fully
loading the system means fully loading all used components
at the same time, resulting in what is called a “balanced”
system in [17]. In our case, the crucial basic operations are
I/O from/to non-volatile storage, performed by the disk con-
troller and the disks, and internal computation, executed by
the CPU.

In the field of non-volatile storage, a new technology has ma-
tured to become a competitor to hard disk drives (HDDs).
Solid state drives (SSDs) combine many flash chips for HDD-
like capacity. The absence of mechanical components al-
lows for low access times and energy consumption, at least
for reading. But still, for acceptable performance, accesses
should be made in blocks of at least a few kilobytes, so SSDs
cannot be treated as just slow RAM. Writing to SSDs should
happen in even larger blocks, as we will explain later.

This newly available technology motivated us in tackling the
JouleSort records. Together with the availability of lower-
power CPUs, we saw a potential for significant improve-
ments.

For the non-volatile storage, the criterion for comparing po-
tential hardware is pretty clear. For a wide range of input
sizes, the algorithm has to read and write every record twice
(i. e. two passes). Therefore, we compare the devices by the
average number of bytes they can read and write per Joule.
This is justified since idle times will be avoided as much as
possible, and also, the idle power consumption is very low,
in particular when compared to the overall system.

Table 1 shows the average amount of data for reading and
writing per Joule, for several HDDs and SSDs. The values
are taken from [10, 9, 11].

The SSDs clearly outperform the HDDs, and moreover, they
consume almost no power in idle mode, while the HDDs have
a significant idle power consumption. The only drawback of
the SSDs is their quite limited size and their high price (cur-
rently about 3 US$ per gigabyte, compared to 0.15 US$ per
gigabyte for HDDs). But still, four 256 GB SSDs are suffi-
cient even for the largest input considered here when using
an in-place algorithm, and monetary cost is not included in
the JouleSort metric.

The Intel X-25M looks the best theoretically, but was un-
available to us. Instead, we chose Super Talent UltraDrive
GX MLC 256GB (FTM56GX25H, firmware 1916) drives,
which have the same controller as the OCZ model listed,
and is thus expected to show similar performance. We also
tried Samsung PB22-J SSDs, but they let us down with very
erratic performance behavior.

Independently of the choice of disk, the absolute I/O perfor-
mance can still be varied by changing the number of SSDs
attached, allowing to balance the I/O with computation.

The second important choice for JouleSort is the CPU. How-
ever, this decision also limits the options for the close pe-
ripherals, i. e. the mainboard including the I/O controllers
(or slots to inserts them) and memory slots. We figured that
I/O is quite “cheap” in terms of energy consumption, so we
wanted to attach as many SSDs as possible to the system.
On the other hand, the number of attachable disks usually
does not scale well with the power consumption. Systems
that can handle very many disks (i. e. having many SATA
ports or powerful slots to insert additional SATA controllers)
are designed for power-hungry high-end processors, and usu-
ally have a quite high idle power, caused by power-wasting
chipsets and peripherals. To compensate for this, the num-
ber of disks would have to be increased hugely, sooner or
later hitting other system bottlenecks like the internal bus
bandwidth, or suffering overheads from high-degree RAIDs,
like the necessity of a very large block size.

Thus, we were looking for very power-saving systems that
could handle a reasonable number of SSDs out-of-the-box.
We decided on the Intel Atom processor because it was ex-
plicitly designed for building systems with little power over-
head. Still, we had to choose between a single-core or a



Disk Model Capacity Read Write Read Write Efficiency
Unit GB MiB/s MiB/s W W MiB/J

SSD
Intel X-25M 80 225 79 1.0 W 2.5 W 128
Samsung PB22-J 256 201 180 1.1 W 2.8 W 124
OCZ OCZSSD2-1VTX120G Vertex Series 120 214 123 1.3 W 2.2 W 110
Intel X-25E 32 226 198 1.7 W 2.7 W 103

HDD
Western Digital WD7500KEVT/00A28T0 750 82 82 2.0 W 2.0 W 41
Samsung HM500JI SpinPoint M7 500 87 87 2.3 W 2.3 W 28
Samsung HD502HI SpinPoint F2 EcoGreen 500 106 108 6.6 W 6.6 W 16

Table 1: Energy efficiency of SSDs and modern HDDs.

dual-core variant. For us, this decision turned out to be
tied to the decision for the chipset and the mainboard (Atom
processors are usually soldered directly on the board).

The system is based on a Zotac IONITX-A mainboard,
equipped with an Atom 330. This processor consumes more
than three times the power (8 W TDP) but features two
cores and four hardware threads. The main advantage of
this system is that its nVidia Ion chipset provides four SATA
ports that handle the SSD transfers at full speed. Moreover,
it allows two DIMMs for a total of 4 GiB of RAM. The 64 bit
logical address space is less prone to fragmentation, which
we experienced on the 32-bit Atom N270.

Table 2 summarizes the key features of the system.

In [17], a quite exotic combination of hardware components
was used, namely a mobile processor plus 13 laptop hard
drives, attached to server-class RAID controllers. In con-
trast to this, our machine has only few components and
would fit into a small ITX case. The only exotic aspect
is the use of very expensive SSDs. But note that smaller,
much cheaper disks could be used for the 108 and 109 scales.
Figure 1 shows a picture of our system.

2.1 SSD Issues and Configuration
While USB flash drives and flash-based memory cards are
ubiquitous nowadays, flash devices that are intended to re-
place HDDs have appeared only recently. SSDs provide a ca-
pacity of several hundred gigabytes, whereas current HDDs
store as much as 2 TB.

By accessing many flash chips in parallel, SSDs achieve
bandwidths that are significantly higher than those of
HDDs. While reading, they also feature very short access
times, allowing random accesses on blocks in the kilobyte
range with almost peak bandwidth. Writing is a completely
different story, though. A data item can be written to only
after being erased (flashed), which happens in comparatively
large blocks. Thus, random writes of kilobyte-scale blocks
can be very slow. Therefore, algorithms have to be adapted
to this asymmetry between reading and writing [2].

Even worse, the maximum number of erase cycles is lim-
ited. To prevent early failure of the disk, the built-in wear-
leveling methods strive to distribute the writes evenly [12].
This management can cause erratic performance behavior.
Certain write patterns may lead to internal fragmentation,

Figure 1: Our Zotac IONITX-A machine together
with the power meter (displaying 37.7 W of current
overall power consumption).



Component Type TDP Estimated Price (08/2009)

Mainboard Zotac IONITX-A 250 $
Processor Intel Atom 330 8 W

2 cores, 4 threads, 1.6 GHz, x86 64
Chipset nVidia Ion 12 W

Memory Kingston 2x2 GiB 4 W 75 $
Disks 4x Super Talent FTM56GX25H 4 W 4x 740 $
Fan 1 W
OS drive High Speed USB Pen Drive 1 W 65 $
Case, Cables, . . . 125 $
Assembly 35 $

Estimated Total (net) 30 W
Estimated Total (overall) 37.5 W
Typical Idle (overall) 26.3 W
Typical Loaded (overall) 37 W
Total Cost 3500 $

Table 2: The tested hardware. Higher overall energy values are caused by losses within the external DC
power supply (typically running at about 80% efficiency). Prices (including all taxes and no discounts) are
based on the German market (August 2009) and converted at a rate of 1.43 US$/EUR.

causing an even permanent performance degradation. For-
tunately, this fragmentation can be reset by applying a low-
level formatting operation (ATA SECURITY ERASE) to
the disk. But in that case, of course, all data is lost. File
systems can also help avoid fragmentation of the disk by
reporting blocks that are not used anymore to the disk, by
issuing operations called trim or block discard. However,
hardware and operating system support is limited so far,
e. g. the functionality is unavaible on RAID volumes.

The question arises how to treat storage devices that are
unreliable in this sense in a benchmark. You get best
performance and reproducible results by formatting before
the benchmark, but this is not a realistic model for pro-
duction use. We study this question by running the test
many times after formatting, evaluating whether degrada-
tion takes place.

3. ALGORITHMICS
In this section, we describe the algorithms applied by our
programs, which we use for the Indy results. For the Day-
tona results, we will use Nsort.

The amounts of data to handle do not fit into internal mem-
ory, i. e. the RAM. The rules also require both the input and
the output to reside on disk.

For efficiency, we apply the external memory model here,
which allows to transfer data from and to disk only in blocks
of a certain size4 B. We base our algorithms on multiway
mergesort, which has been proven optimal for this setting [1].
It allows to sort up to O(M2/B) records with two passes,
where M is the internal memory size. Similar algorithms
were already used several times by successful Sort Bench-
mark entries, e. g. psort [5].

The algorithm has two main phases. In the first phase, it
splits the input into many runs of size O(M). In practice,
the constant factor varies between 1 and 1/4, depending on

4All sizes in this discussion are in number of records.

the implementation. These runs are read from disk, sorted
internally, and written back to disk. In the second phase,
all runs are merged using a multiway merger. A prefetch
sequence ensures that the right blocks are prefetched asyn-
chronously, while the CPU performs the merging. Writing
out the finished blocks is also overlapped with computation.

When looking closer at the algorithm, one notes that there
are random block accesses only in one stage, namely when
reading the blocks for merging. In contrast, run formation
can transfer O(M) records at once. The output chunk size
in writing the result in the merge phase is also only limited
by the available buffer memory. So fortunately, the only
operation that really needs random block access only reads
data, a discipline that SSDs are particularly good in.

4. IMPLEMENTATION
In the Indy class of JouleSort, we are allowed to take full
advantage of the fixed record size and the short keys that
are chosen uniformly at random.

Our programs, namely EcoSort and DEMSort, support full
overlapping of I/O and computation, in both phases using
the techniques available from STXXL [8]. Due to the limited
speed of the Atom processors, it was important to further
tune the internal sorts and merges.

• In memory, the algorithm sorts only the keys associ-
ated with an index, and permutes the sequence of full
records later in parallel.

• Sorting the keys is done by applying parallelized least
significant digit radix sort to the three most significant
bytes of the key, and then sorting the partially sorted
sequence by insertion sort. Giving prefetching hints to
the distribution stage improves performance here.

• We use the parallelized function multiway merge from
the libstdc++ parallel mode, based on the Multi-Core



Standard Template Library (MCSTL) [19].5 The par-
allel multiway merger reaches best performance if a
single invocation can output at least B records. Hav-
ing 3 blocks per run buffered in internal memory (2 for
the merger to guarantee at least B elements available
per run, the third block for prefetching) can only be
done by further reducing the block size at the cost of
I/O performance. Therefore, we use only 2 blocks per
run and combine blocks that will run empty soon.

As a consequence, the disk bandwidth is fully utilized at
about 90% of the time, i. e. we are close to I/O-bound. Fur-
ther tuning of internal computation just for the sake of con-
suming a little less power by the processor (by idling or
reducing its clock rate) seemed not worthwhile, given the
overall power consumption of the system. However, we have
conducted tests on the number of threads to use (see Sec-
tion 5.3).

4.1 Sorting 108 and 109 Records
For the 108 and the 109 record Indy category, we have
developed the program EcoSort using the parallelized ver-
sion of the Standard Template Library for XXL Data Sets
(STXXL) [4].

The STXXL provides two sort implementations,
stxxl::sort(), which writes the output back to the
location of the input, and stxxl::stream::sort(). The
latter does not need to know the number of elements to be
sorted in advance, and produces output in a way that can
be pipelined to further algorithmic steps. Combining the
best features of these two sorters, we engineered EcoSort
using direct (non-pipelined) access to the input blocks (like
the standard sorter) and writing output to a new file (as
usually done with the pipelined sorter). The following
additional tuning measures were applied.

• Avoid repeated allocation/deallocation of memory for
the temporary buffers by using a free list.

• Overlap loading the first run with initialization and
writing the last run with cleanup operations.

• Reducing size of the first two runs to 1
3

and 2
3

of the
regular size, thus loading the CPU earlier from the
start.

4.2 Sorting a Terabyte
For the largest scale category, 1010 records, things get more
complicated.

First of all, we have only 2.4 % more storage capacity than
absolutely needed, so we have to sort in-place. Nsort is not
capable of doing that, but overwriting the input disquali-
fies the result for the Daytona class anyway. There is just
not enough disk space in the machine to qualify for 1TB
Daytona6, so we stick with Indy for this input size.
5The corresponding sort routine could also be used to pro-
vide fully comparison-based sorting. The overhead is signif-
icant, but not fatal.
6Using 512 GB SSDs would have solved this problem, but
given the additional monetary effort, this did not seem
worthwhile.

We used a variant of DEMSort [16, 15] because of its ca-
pability to sort in-place. DEMSort currently leads the Indy
GraySort and Indy MinuteSort categories, and is originally
designed to run on distributed-memory clusters, but the
overhead is only small when running on a single node. It
was augmented with the features mentioned at the begin-
ning of this section.

We get close to the O(M2/B) limit for two passes, which
we like to adhere to by all means. From the 4 GiB of RAM,
the BIOS allows to use only 3.5 GiB. Subtracting the system
memory usage and the program binary, we are left with only
about 3.25 GiB. Due to overlapping, we need space M once
for writing the last run and reading the next one, and once
to store the current run, 0.16M for the keys (10 bytes key,
2 bytes filler, 4 bytes index), and another M for doing the
permutation out-of-place. Thus, for run formation, M is
limited to about 1 GiB or 107 records, resulting in R = 973
runs.

For the multiway merging, we need at least two buffer blocks
per run, but have the full memory available, so this yields
for the block size: 2BR ≤ M ⇔ B ≤ M/(2R) = 3.25 ·
107/(2 ·973) = 16 700 records, or 1.67 MB. Finally, we chose
a block size of 1 433 600 bytes, to allow a larger write buffer.

This configuration is very tight. Enlarging the input size,
e. g. by a factor of 2, would require either more internal
memory (hardware incapable), an additional pass (+50%
running time), or even smaller blocks (further decreasing
the effective bandwidth for merge reading).

To achieve external in-place operation, the blocks read in
the merging phase must immediately be returned to the file
system. In the version used for GraySort, this was achieved
by creating a file for each block of the formed runs, and
deleting it when obsolete. This incurred quite some file sys-
tem overhead. Thus, we improved this by using a file per
run, reducing the number of files by three orders of magni-
tude. The data is written in (block-wise) reversed order, so
that in the merging phase, blocks are immediately returned
to the file system after reading, by truncating the run file
appropriately.

However, even if the runs are placed sequentially on disk
(with respect to logical disk addressing), the output file will
necessarily be fragmented. This is because the file system
has to fill the gaps between the runs due to the lack of addi-
tional space. The SSDs can counter this by doing so-called
write combining, but nevertheless, transferring a logically
non-contiguous range will incur overheads.

To improve this situation that suffers from small blocks, we
replaced the block I/O by range I/O, except for reading in
the merge step. The program issues a single system call
for reading/writing an entire run, and for writing a large
chunk of the output. This is equivalent to a huge block size
that amortizes all overheads. Also, this approach does not
contradict the external memory model.

5. EXPERIMENTS
5.1 System Details



We removed the included wireless module from the IONITX-
A mainboard and disabled other unused hardware in the
BIOS setup if possible. The machine had no keyboard or
monitor attached, but was connected to the LAN and re-
motely controlled via secure shell (SSH). To preserve all SSD
space for sorting, the OS was installed on a USB flash drive.

The Zotac IONITX-A board requires 19 V DC. We used
the included 90 W power supply, a smaller one (Dehner
SYS1319-3019, 30 W) actually consumed about 5% more en-
ergy, despite the fact that it was better utilized.

As operating system, we employed the Debian sid distri-
bution with a 2.6.33 Linux kernel. There was only a mini-
mal set of services running, and no graphical user interface.
Our programs were compiled with GCC 4.4.3, optimization
switched to -O3. The RAID was managed in software by
the device mapper of the Linux kernel. All partitions were
formatted using XFS.

5.2 Energy Measurement
For measuring the energy consumption, we used a ZES
ZIMMER LMG95 precision power meter. This device can
be controlled via the serial port, and has an accuracy of
less than ±0.1% for the applicable measurement range.
We started the measurement just before the sorting pro-
gram, and stopped it right after termination, while sam-
pling power in 1-second intervals. We calculated the en-
ergy by multiplying the average power by the time reported
by /usr/bin/time. The temperature was about 23 ◦ C
throughout the tests, the CPU fan was running.

The results in time and energy consumption are averaged
over five runs for each category, we also give the respective
standard deviation.

All measured power values for our machine denote overall
power consumption, i. e. they include losses within the DC
power supply.

5.3 Setup
For all tests, we used four SSDs configured as a RAID-0. Se-
quential transfer tests showed a peak performance of about
1 000 MiB/s read and 600 MiB/s write for the RAID.

The input for all runs was generated by the gensort pro-
gram provided by the Sort Benchmark committee, running
in ASCII mode.

Before each program run, the (old) output file was removed.
After each run, the output was checked for correctness, ei-
ther by running valsort or by comparing its MD5 sum with
a reference MD5 sum precomputed from a checked output.

The programs were allowed to consume up to 3.25 GiB of
RAM for their operation.

For the 108 category we removed one of the two 2 GiB
RAM modules and allowed the programs to consume up
to 1.75 GiB of RAM. This comes with a small performance
penalty (running time increases up to 5 %) which is out-
weighed by reducing power consumption by about 10 %
(about 2.8 W idle, 3.8 W during the experiments). The run
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Figure 2: Evaluating the optimal number of threads.

formation phase of the 108 category was further restricted
to 0.85 GiB of RAM because the increased number of runs
(49 instead of 24) resulted in better overlapping and lower
running time without affecting the merging phase.

For categories 108 and 109, we used a block size of 13 107 200
bytes.

For the TB scale using DEMSort, we lowered the block size
to 1 433 600 bytes, as explained before. We newly generated
the input before each run due to the lack of space, after the
RAID was cleaned of all files, which implies that we newly
created the temporary files and the output file each time.

For choosing the optimal number of threads, we conducted
pre-tests for 10 GB. As shown in Figure 2, 4 threads for run
formation have the best running time, and there is a tie
between 3 and 4 threads for merging. The energy consump-
tion goes along these lines, so we simply took 4 threads in
all cases.

For Nsort (version 3.4.28, trial), we used the following com-
mand line:

nsort -format=size:100

-field=name:key10ascii,size:10,pos:1,char

-key=key10ascii -statistics -processes=4

-method=radix -memory=3250M

-file_system=/mnt/ssdraid0,

transfer_size:16M,count:C

-temp:/mnt/ssdraid0/nsort/,

transfer_size:16M,count:C

with C=4 for 108 records, and C=2 for 109 records.

5.4 Categorization
The results of our EcoSort and DEMSort programs count for
the Indy class because our programs can handle only fixed-
size records. Also, some optimizations rely on a certain key
universe.

The Nsort program is generally acknowledged to adhere to
the Daytona specifications. Hence, we submit its results,



Indy
JouleSort Category (records) 108 109 1010

Program EcoSort EcoSort DEMSort
Memory Configuration 1 × 2 GiB 2 × 2 GiB 2 × 2 GiB
Data Volume 10 GB 100 GB 1 TB
Number of records 100 000 000 1 000 000 000 10 000 000 000
Checksum 2faf0ab746e89a8 1dcd615efb9dfe11 12a06cd06eeb64b16
Time 72.4±0.24 s 691±3.2 s 17 026±29 s
Energy 2 345±9 J 25.09±0.11 kJ 571.8±1.1 kJ
Average Power 32.4±0.07 W 36.3±0.01 W 33.6±0.03 W
Records per Joule 42 635±168 39 853±183 17 489±33
Typical Bandwidth Run Formation 540 MiB/s avg 600 MiB/s avg 711 MiB/s avg

867 MiB/s read
603 MiB/s write

Typical Bandwidth Merge 610 MiB/s avg 600 MiB/s avg 151 MiB/s avg
187 MiB/s read

127 MiB/s write

Daytona
JouleSort Category (records) 108 109

Program Nsort Nsort
Memory Configuration 1 × 2 GiB 2 × 2 GiB
Data Volume 10 GB 100 GB
Number of records 100 000 000 1 000 000 000
Checksum 2faf0ab746e89a8 1dcd615efb9dfe11
Time 75.7±0.10 s 756±0.9 s
Energy 2 485±4 J 27.94±0.03 kJ
Average Power 32.8±0.02 W 37.0±0.02 W
Records per Joule 40 249±59 35 789±44
Typical Bandwidth Input Reads 230 MiB/s 240 MiB/s
Typical Bandwidth Temp Writes 230 MiB/s 240 MiB/s
Typical Bandwidth Temp Reads 330 MiB/s 300 MiB/s
Typical Bandwidth Output Writes 330 MiB/s 300 MiB/s

Table 3: Summary of the Sort Benchmark results.
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which are a bit worse than the Indy results, to the Daytona
class.

5.5 Indy Results
All Sort Benchmark results are subsumed in Table 3, ac-
companied by the respective checksums. No duplicates were
found for all inputs.

The Indy results for 108 and 109 records improve over the
2009 Daytona and Indy records [17, 20] (11 600 and 11 300/
11 600 records per Joule) by factors 3.7 and 3.5, respectively.
The absolute running times are also better than for the com-
petitors. The achieved bandwidth is about 600 MiB/s aver-
aged over reading and writing, equivalent to about 75% peak
performance.

For the 1 TB scale, however, the energy efficiency is far worse
compared to the 100 GB scale. To find out the reason, we
ran tests for other input sizes in the gap between 100 GB
and 1 TB using the same parameter values, namely 248 GB,
500 GB, 750 GB, and 875 GB. The results stated in Figure 3
show that the degradation is correlated to the filling de-
gree of the SSDs. The curve bends sharply from 875 GB to
1 TB, indicating that filling the SSDs almost completely is
inadvisable. The performance degradation must be caused
by increasing internal fragmentation, as explained in Sec-
tion 2.1. For 1 TB, the I/O rate drops dramatically after
run formation, when the merger has to fill the gaps on disk,
namely from 603 MiB/s to 151 MiB/s (averaged over read
and write). At least, there is no further degradation for
multiple runs in a row, even when a multiple of the disk
capacity is written in total.

We still beat the previous record [17] (3 425 records per Joule
for Indy) by a factor of 5.1. However, the cited result was
not achieved using the mentioned low-power system, but
with solid server hardware accessing 12 disks and consuming
400 W. Thus, we cannot compete in terms of running time
in this case, our program takes about 2.4 times as long as
the competitor.

We had even worse results for the I/O bandwidth degrada-
tion when generating the input using regular OS-buffered
I/O. Instead, we wrote 1 GB blocks to the RAID by piping
the gensort output through dd oflag=direct,nonblock

obs=1G. We consider this justified because you cannot blame
the sorter for a non-optimally generated input.

Ultimately, the terabyte result is an artifact of the space
scarceness in our system. Using twice as large disks would
most likely have provided the performance of the 500 GB
run, which is almost 30 000 rec/J, and would beat the pre-
vious record by a factor of more than 8, needing only 33%
more absolute running time. We hope to achieve a similar
result by using the block discard feature of the file system,
as soon as this is supported for RAID volumes.

The improvement of our Indy results compared to our Jan
1 2010 submission are mostly due to optimizing the internal
sorter, using prefetching, insertion sort instead of bubble
sort, and only three rounds of radix sort instead of four.
Also, the further degradation of the SSDs after the first run
for 1 TB disappeared, maybe some firmware had not been



correctly installed before.

5.6 Daytona Results
The result of Nsort for 108 records and 109 records are about
6% and 11% worse than their respective Indy counterparts,
which is not too bad. The running time is 5% and 10%
higher respectively, and the average power consumption is
1–2% higher.

The Jan 1 2010 Daytona competitor for 108 records, Flash-
Sort, only achieves 24 800 records per Joule, which is about
a third less efficient. The system used there is not re-
ally low-power, featuring a quad-core AMD processor. It
mainly benefits from the 16 GiB of RAM, which can hold
the full 108 record input, making intermediate storing un-
necessary. From the 80 GB net capacity of the Fusion-IO
high-performance SSD used, only 37 GB were available for
use, so the price per gigabyte approached about 100 US$.
Due to these restrictions, there is no result for the 109 record
category, showing that this approach does not scale well.

6. CONCLUSIONS
We have demonstrated, that home server hardware together
with highly tuned, parallelized sorting algorithms can sort
large amounts of data considerably more energy-efficiently
than previous systems.
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