
Energy-Efficient Sorting using Solid State Disks

Andreas Beckmann
∗

and Ulrich Meyer
Goethe-Universität Frankfurt am Main

Robert-Mayer-Straße 11-15
60325 Frankfurt am Main, Germany

{beckmann,umeyer}@cs.uni-frankfurt.de

Peter Sanders and Johannes Singler
†

Karlsruhe Institute of Technology
Am Fasanengarten 5

76131 Karlsruhe, Germany

{sanders,singler}@kit.edu

ABSTRACT
We use the JouleSort Benchmark as a case study for mak-
ing data-intensive applications more energy-efficient. Using
home server hardware, solid state disks, and efficient algo-
rithms, we beat the previous records by a factor of 3 and 4
respectively, and more traditional systems by an order of
magnitude. Since we also use parallel processing, this comes
basically without a performance penalty.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—
Systems; E.5 [Files]: Sorting and searching

General Terms
Algorithms, Design, Experimentation, Measurement, Per-
formance

Keywords
Algorithm Engineering, SortBenchmark, Benchmark, En-
ergy Efficiency, Power, Sort, Solid State Disk, Intel Atom

1. INTRODUCTION
Computers (and their cooling devices) have become a ma-
jor factor in the consumption of electrical energy. More-
over, battery lifetime is the main limiting factor for many
applications of mobile devices. Hence, reducing energy con-
sumption of computers is now an important economical and
environmental goal. While this has fundamentally changed
the way chips are designed, there is much less work on adapt-
ing the entire system, consisting of the hardware, and the
software running on it. A notable exception is the JouleSort
benchmark introduced by Rivoire et al. [16] in SIGMOD
2007. JouleSort is a new category to the well-established

∗Supported in part by MADALGO – Center for Massive
Data Algorithmics, a Center of the Danish National Re-
search Foundation, and by DFG grant ME 3250/1-2.
†Partially supported by DFG grant SA 933/3-2.

SortBenchmark1, introduced by Turing award winner Jim
Gray in 1985. As in the other categories of SortBenchmark,
the task is to sort 100-byte records containing a 10-byte
key. There are two classes where sorters may participate,
the highly tuned Indy class (only needs to sort the Sort-
Benchmark input and may use prior knowledge about the
key distribution) and more general Daytona class (needs to
be able to sort other inputs without significant loss of per-
formance). In JouleSort, the winning system has to sort
as many records per Joule as possible. There are three size
scales — 108, 109, and 1010 records, corresponding to 10 GB,
100 GB, and 1 TB of data.2 We believe that JouleSort is an
interesting framework for research in energy-efficient system
design since the sorting problem is at the same time non-
trivial, simple to state, and of fundamental importance in
many applications, in particular in data bases. To date, the
performance from [16] (CoolSort, using the Nsort [13] pro-
gram) in the Daytona class (which serves as a lower bound
for Indy) has not been beaten, except for a small improve-
ment in the 109 scale by OzSort in 2009 [19].

In this paper, we reconsider the design choices made in [16]
and come to considerably different solutions, leading to a
factor of 3 to 4 better performance per Joule. Instead of
a large number of notebook disks, now, a small number of
solid state disks (SSDs) wins. Instead of an ordinary (mo-
bile) PC processor, we go down one scale on the ladder of
processor categories and use the Intel Atom processor, which
is designed for mobile devices and home servers. It turns
out that using parallelism, this does not imply significantly
longer running times.3

Section 2 explains our hardware choices, Section 3 the al-
gorithms, and Section 4 the implementation details. Then,
Section 5 evaluates the performance of our approach with fo-
cus on the JouleSort benchmark. We conclude in Section 6.

Related Work
Rivoire et al. introduce JouleSort in [16] giving an excel-
lent explanation why energy-efficient sorting is interesting.
With CoolSort, they present a highly efficient machine based
on notebook technology, including a large number of note-

1http://sortbenchmark.org
2In this paper as in the SortBenchmark regulations,
1 GB = 109 bytes, 1 TB = 1012 bytes, and in addition
1 KiB = 210 bytes, 1 MiB = 220 bytes, 1 GiB = 230 bytes.
3We do have longer running time in the 1 TB scale, but we
will explain that this is a very special case.

http://sortbenchmark.org

book disks. This system is an order of magnitude more
energy-efficient than systems currently used for data base
servers [3]. In their conclusion, they already predict that
flash memory will play a role in future JouleSort records.
However, in [17], they report on several experiments includ-
ing systems with SSDs and low power processors, none of
which beats CoolSort. We profit from the increased perfor-
mance of recent SSDs.

Andersen et al. [3] propose to build a Fast Array of Wimpy
Nodes (FAWN) for fast server-style computing that uses
ARM processors and flash memory storage. It would be
interesting to run the 10 GB JouleSort on one node of such
a machine. Using FAWN for the larger inputs would be dif-
ficult since JouleSort requires input and output to be in a
single file. But running a high performance distributed file
system on FAWN sounds challenging. Moreover, FAWN uses
Ethernet for communication between the nodes. It is not
clear to us whether this is very energy-efficient for large net-
works, once one scales to the large number of nodes because
of the high bisection bandwidth required for the 1 TB Joule-
Sort.

MapReduce has become a popular approach to large scale
data processing. Its energy efficiency is considered in [6]
where it is pointed out that optimizing the sorting phase
inside the system is crucial for energy efficiency.

Lang and Patel [12] show how reducing clock frequencies
helps to reduce the energy consumption of data base queries
(TPC-H style). We go one step further and propose to use
lower clock frequency processors optimized for energy effi-
ciency.

2. HARDWARE CHOICE
Hardware components are usually most energy-efficient
when they are fully loaded with necessary work. Usually,
it is not useful to slow down operation artificially on a given
system, because the energy savings do not outweigh the
longer operation time, due to the base load. Thus, we did
not experiment with the clock rate or the like. We just rely
on the automatic frequency management.

Recently, a technology has matured to become a competi-
tor to hard disk drives (HDDs) in the field of non-volatile
storage. Flash chips are combined to SSDs with HDD-like
capacity. The absence of mechanical components allows for
low access times and energy consumption, at least for read-
ing. But still, for acceptable performance, the access should
be done in blocks of at least a few kilobytes, so SSDs cannot
be treated as just slow RAM. Writing to an SSDs should
take place in even larger blocks, as we will explain later.

This newly available technology motivated us in tackling the
JouleSort records. Together with availability of lower-power
CPUs, we saw a potential for significant improvements.

For the non-volatile storage, the desired classification is
pretty clear. For a wide range of input sizes, the algorithm
has to read and write every record twice (i. e. two passes). So
we can compare the available devices by the average number
of bytes they can read and write per Joule.

Table 1 shows the average amount of data for reading and
writing per Joule, for several HDDs and SSDs. The values
are taken from [9, 8, 10].

The SSDs clearly outperform the HDDs, and moreover, they
consume almost no power in idle mode, while the HDDs have
a significant base energy consumption. Their only drawback
is their quite limited size and their high price (currently
about 3 US$ per gigabyte, compared to 0.15 US$ per giga-
byte for HDDs). But still, four 256 GB SSDs are sufficient
even for the largest input considered here when using an in-
place algorithm, and the cost is not included in the JouleSort
metric.

The Intel X-25M looks the best theoretically, but was un-
available to us. Instead, we chose Super Talent UltraDrive
GX MLC 256GB (FTM56GX25H, Firmware 1916) drives,
which have the same controller as the OCZ model listed.
We also tried Samsung PB22-J SSDs, but they let us down
with very erratic performance behavior. The I/O perfor-
mance of the system can now be varied by changing the
number of SSDs attached.

The next most important choice for JouleSort is the pro-
cessor. We decided on the Intel Atom processor because it
was explicitly designed for delivering good performance per
Watt. A further choice is whether to use a single-core or
a double-core processor. For us, this decision turned out
to be tied to the decision for the chip-set and board to be
used (Atom processors are usually soldered directly on the
board).

The system is based on a Zotac IONITX-A board, equipped
with an Atom 330. This processor consumes more than
three times the power of an N270 (8 W TDP) but supports
two cores and four hardware threads. The main advantage
of this system is that its nVidia Ion chipset provides four
SATA ports that can handle the SSD transfers at full speed.
Moreover, it allows two DIMMs for a total of 4 GiB of RAM.
The 64 bit logical address space is less prone to fragmenta-
tion, which we experienced on the 32-bit Atom N270.

Table 2 summarizes the key features of the system.

A quite exotic combination of hardware components was
used in [16], namely a mobile processor plus 13 notebook
hard drives, attached to server-class RAID controllers. In
contrast to this, our machine has only few components and
would fit into a small ITX case. The only exotic aspect is
the use of very expensive SSDs. But note that smaller, much
cheaper disks could be used for the 108 and 109 scales.

2.1 SSD Issues and Configuration
While USB flash drives and flash-based memory cards are
ubiquitous nowadays, flash devices that are intended to re-
place HDDs have appeared only recently. The SSDs pro-
vide a capacity of several hundred gigabytes, whereas cur-
rent HDDs store as much as 2 TB.

By accessing many flash chips in parallel, SSDs achieve
bandwidths that are significantly higher than those of hard
disk drives. While reading, they also feature very short ac-
cess times, allowing random accesses on blocks in the kilo-

Disk Model Capacity Read Write Read Write Efficiency
Unit GB MiB/s MiB/s W W MiB/J

SSD
Intel X-25M 80 225 79 1.0 W 2.5 W 128
Samsung PB22-J 256 201 180 1.1 W 2.8 W 124
OCZ OCZSSD2-1VTX120G Vertex Series 120 214 123 1.3 W 2.2 W 110
Intel X-25E 32 226 198 1.7 W 2.7 W 103

HDD
Western Digital WD7500KEVT/00A28T0 750 82 82 2.0 W 2.0 W 41
Samsung HM500JI SpinPoint M7 500 87 87 2.3 W 2.3 W 28
Samsung HD502HI SpinPoint F2 EcoGreen 500 106 108 6.6 W 6.6 W 16

Table 1: Energy efficiency of SSDs and modern HDDs.

Component Type TDP Estimated Price (08/2009)

Mainboard Zotac IONITX-A 250 $
Processor Intel Atom 330 8 W

2 cores, 4 threads, 1.6 GHz, x86 64
Chipset nVidia Ion 12 W

Memory Kingston 2x2 GiB 4 W 75 $
Disks 4x Super Talent FTM56GX25H 4 W 4x 740 $
Fan 1 W
OS drive High Speed USB Pen Drive 1 W 65 $
Case, Cables, . . . 125 $
Assembly 35 $

Estimated Total (net) 30 W
Estimated Total (overall) 37.5 W
Typical Idle (overall) 25 W
Typical Loaded (overall) 37 W
Total Cost 3500 $

Table 2: The tested hardware. Higher overall energy values are caused by losses within the external DC
power supply (typically running at about 80% efficiency). Prices (including all taxes and no discounts) are
based on the German market (August 2009) and converted at a rate of 1.43 US$/EUR.

byte range with almost peak bandwidth. Writing is a com-
pletely different story, though. A data item can be written to
only after being erased (flashed), which happens in compar-
atively large blocks. Thus, random writes of kilobyte-scale
blocks can be very slow. Therefore, algorithms have to be
adapted to this asymmetry between reading and writing [2].

Even worse, the maximum number of erase cycles is lim-
ited. To prevent early failure of the disk, the built-in wear-
leveling methods strive to distribute the writes evenly [11].
This management can cause erratic performance behavior.
Certain write patterns can lead to internal fragmentation,
causing a permanent performance degradation. Fortunately,
this fragmentation can be reset by applying a low-level for-
matting operation (ATA SECURITY ERASE) to the disk.
But in that case, of course, all data is lost. File systems
could also help avoid fragmentation of the disk by report-
ing blocks that are not used anymore to the disk, by issuing
operations called trim or block discard. However, hardware
and operating system support is limited so far.

The question arises how to treat storage devices like this in
a benchmark. You get best performance and reproducible
results by formatting before the benchmark, but this is not
very realistic. We study this question by running the test
many times after formatting. The JouleSort rules require

averaging over at least five runs.

3. ALGORITHMICS
The amounts of data we handle here do not fit into the
internal memory, i. e. the RAM. The rules also require both
the input and the output to reside on disk.

To be efficient, we apply the external memory model here,
which allows to transfer data from and to disk only in blocks
of a certain size4 B. We base our algorithms on multiway
mergesort, which has been proven optimal for this setting [1].
It allows to sort up to O(M2/B) records with two passes,
where M is the internal memory size. Similar algorithms
were already used several times by successful SortBench-
mark entries, e. g. psort [5].

The algorithm has two main phases. In the first phase, it
splits the input into many runs of size O(M). In practice,
the constant factor varies between 1 and 1/4, depending on
the implementation. These runs are read from disk, sorted
internally, and written back to disk. In the second phase,
all runs are merged using a multiway merger. A prefetch
sequence ensures that the right blocks are prefetched asyn-
chronously, while the CPU performs the merging. Writing

4All sizes in this discussion are in number of records.

out the finished blocks is also overlapped with computation.

When looking closer at the algorithm, one notes that there
are random blocks accesses only in one place, namely for
reading the blocks for merging. In contrast, run formation
can transferO(M) records at once. The output chunk size in
writing the result in the merge phase is also only limited by
the available buffer memory. Fortunately, the only operation
that really needs random block access only reads data, a
discipline where SSDs have a particular advantage.

4. IMPLEMENTATION
In the Indy category of JouleSort, we are allowed to take
full advantage of the fixed, relatively large record size and
the short keys that are chosen uniformly at random.

Our programs support full overlapping of I/O and com-
putation, in both phases using the techniques available in
STXXL [7]. Due to the limited speed of the Atom proces-
sors, it was important to further tune the internal sorts and
merges.

• In memory, we sort only the keys, associated with an
index, and permute the sequence of full records later.

• Sorting the keys is done by applying parallelized least
significant digit radix sort to the four most significant
bytes of the key and then sorting the partially sorted
sequence by insertion sort.

• The libstdc++ parallel mode, based on the Multi-Core
Standard Template Library (MCSTL) [18], exploits
the parallelism on the two cores and four threads pro-
vided by the processor. In particular, we use the par-
allelized function call multiway merge.5

• The parallel multiway merger reaches best perfor-
mance if a single invocation can output at least B
records. Having 3 blocks per run in internal memory
(2 for the merger to guarantee ≥ B available elements
per run, the third block for prefetching) can only be
done by further reducing the block size at the cost of
I/O performance. Therefore, we only use 2 blocks per
run and combine blocks that will run empty soon.

As a consequence, the disks are fully loaded at about 80%
of the time, i. e. we are close to I/O-bound. Further tuning
of internal computation just for the sake of consuming a
little less power by the processor (by idling or reducing its
clock rate) seemed not worthwhile, given the overall power
consumption of the system. However, we have conducted
tests on the number of threads to use (see Section 5.3).

4.1 Sorting 108 and 109 Records Respectively
For the 108 and the 109 record category, we have developed
the program EcoSort using the parallel version of the Stan-
dard template library for XXL data sets (STXXL) [4].

5The MCSTL sorter could also be used to provide fully
comparison-based sorting. The overhead is significant, but
not fatal.

The STXXL provides two sorter implementations,
stxxl::sort() that writes the output back to the lo-
cation of the input, and stxxl::stream::sort() for
pipelined processing that does not need to know the
number of elements to be sorted in advance, and produces
output in a way that can be pipelined to further algorithmic
steps. Combining the best features of these two sorters we
engineered EcoSort using direct access to the input blocks
(like the standard sorter) and writing output to a new file
(as usually done with the pipelined sorter). The following
additional tuning measures were applied.

• Avoid repeated allocation/deallocation of memory for
the temporary buffers by using a free list.

• Overlap loading the first run with initialization and
writing the last run with cleanup operations.

• Reducing size of the first two runs to 1
3

and 2
3

of the
regular size, thus loading the CPU earlier from the
start.

• Allow to use a different degree of parallelization in the
two phases.

4.2 Sorting a Terabyte
For the largest scale category, 1010 records, things get more
complicated.

First of all, we have only 2.4 % more storage capacity than
absolutely needed. So, as mentioned before, we have to sort
in-place. Also, all disks have to be configured as a RAID-0.
With other configurations, we could not have explored the
full bandwidth, but would have had to use file striping and
fill one disk after the other with the output.

We used a variant of DEMSort [15, 14], because of its ca-
pability to sort in-place. It was augmented with the fea-
tures mentioned at the beginning of this section. DEM-
Sort currently leads the Indy GraySort and Indy MinuteSort
categories, and is originally designed to run on distributed-
memory clusters, but the overhead is only small when run-
ning on a single node.

Secondly, we get close to the O(M2/B) limit for two passes,
which we like to adhere to by all means. From the 4 GiB of
RAM, the BIOS allows to use only 3.5 GiB, so subtracting
the system memory usage and the program binary, we are
left with only about 3.25 GiB. Due to overlapping, we need
space M once for writing the last run and reading the next
one, and once to store the current run, 0.16M for the keys
(10 bytes key, 2 bytes filler, 4 bytes index), and another M
for doing the permutation out-of-place. Thus, for run forma-
tion, M is limited to about 1 GiB or 107 records, resulting
in R = 973 runs.

For the multiway merging, we need at least two buffer blocks
per run, but have the full memory available, so this yields
for the block size: 2BR ≤ M ⇔ B ≤ M/(2R) = 3.25 ·
107/(2 ·973) = 16 700 records, or 1.67 MB. Finally, we chose
a block size of 1 433 600 bytes, to leave more space for the
write buffer.

This configuration is very tight. Enlarging the input size,
e. g. by a factor of 2, would require either more internal
memory (hardware not capable), an additional pass (+50%
running time), or even smaller blocks (further decreasing the
effective bandwidth for merge reading).

To achieve external in-place operation, the blocks read in
the merging phase must immediately be returned to the file
system by DEMSort. In the version used for GraySort, this
was achieved by creating a file for each block of the formed
runs, and deleting it when obsolete. This incurred quite
some file system overhead. Thus, we improved this by using
a file per run, reducing the number of files by three orders
of magnitude. The data is written in (block-wise) reversed
order, so that in the merging phase, blocks that have already
been read, can immediately be returned to the file system
by truncating the run file appropriately.

However, even if the runs are placed sequentially on disk
(with respect to logical disk addressing), the output file will
necessarily be fragmented. This is because the file system
has to fill the gaps between the runs due to the lack of
additional space. The SSDs could counter this by doing
write combining, but nevertheless, transferring a logically
non-contiguous range will also incur overheads.

To improve this situation that suffers from small blocks, we
replaced the block I/O by range I/O, i. e. the program issues
a single system call for reading/writing an entire run, and
for writing a large chunk of the output. This is equivalent
to a huge block size, which should amortize all overheads.
Also, this approach does not contradict the external memory
model.

5. EXPERIMENTS
5.1 System Details
The Zotac IONITX-A mainboard was shipped with a wire-
less module installed. This module was removed and other
unused hardware was disabled in the BIOS if possible. The
machine has no keyboard or monitor attached, but is con-
nected to the LAN instead and remotely controlled via se-
cure shell (SSH). To preserve all SSD space for sorting, the
OS was installed on a USB flash drive.

The Zotac IONITX-A board requires 19 V DC. We used
the included 90 W power supply, a smaller one (Dehner
SYS1319-3019, 30 W) actually consumed about 5% more en-
ergy, despite the fact that it was better loaded.

As operating system, we used the Debian sid distribution
with a 2.6.30 Linux kernel. There was only a minimal set of
services running, no graphical user interface. Our programs
were compiled with GCC 4.4.3, optimization switched to
-O3. The RAID was managed in software by the Linux Log-
ical Volume Manager. All partitions were formatted using
XFS.

5.2 Energy Measurement
For measuring the energy consumption, we used a ZES
ZIMMER LMG95 precision power meter. This device can
be controlled via the serial port, and has an accuracy of
less than ±0.1% for the applicable measurement range.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4
 0

 1

 2

 3

 4

 5

s kJ

Time for Run Formation
Time for Merging

Total Energy

Figure 1: Evaluating the optimal number of threads.

We started the measurement just before the sorting pro-
gram, and stopped it right after termination, while sam-
pling power in 1-second intervals. We calculated the energy
by multiplying the average power by the time reported by
/usr/bin/time for the program run. The temperature was
about 23 ◦ C throughout the tests, the CPU fan was running.

The results in time and energy consumption are averaged
over five runs for each category, we also give the respective
standard deviation.

All measured power values for our machine denote overall
power consumption, i. e. they include losses within the DC
power supply.

5.3 Setup
For all tests, we used four SSDs configured as a RAID-0.
Sequential transfer tests show a peak performance of about
1 000 MiB/s read and 600 MiB/s write for the RAID.

In each category, the respective program was run five times.
Before each run, the (old) output file and all temporary files
were removed. After each run, the output was checked for
correctness, either by running valsort or by comparing its
MD5 sum with a reference MD5 sum precomputed from a
checked output.

The programs could use up to 3.25 GiB of RAM for their
operation. The run formation phase of the 108 category was
further restricted to 0.85 GiB of RAM because the increased
number of runs (49 instead of 12) resulted in better overlap-
ping and lower running time without affecting the merging
phase.

For categories 108 and 109, we used block sizes of 26 214 400
and 13 107 200 bytes, respectively.

For for the TB scale using DEMSort, we lowered the block
size to 1 433 600 bytes, as explained before, and newly gen-
erated the input before each run due to the lack of space,
after the RAID was cleaned of all files. This implies that we
newly created the temporary files and the output file each
time.

For choosing the optimal number of threads, we conducted

pre-tests for 10 GB. As shown in Figure 1, 4 threads for run
formation and 3 threads for merging have the best running
times. The energy consumption goes along these lines, so
we chose these values for the 108 and 109 record input. For
1010 records, we used 4 threads also for merging because the
high merge degree is more compute-intensive.

The input for all runs was generated by the gensort program
provided by the SortBenchmark jury, running in ASCII
mode.

5.4 Categorization
We submit our results for the Indy category because our
programs can only handle fixed-size records, and we had to
sort the 1 TB input in-place due to space constraints. Also,
some optimizations rely on a certain key universe.

5.5 Results
Here, we state our results for the Indy JouleSort category.

We sorted 108 records in 76.7 s, consuming 2 821 J of energy,
i. e. 36.8 W on average. This is equivalent to 35 453 records
per Joule.

We sorted 109 records in 756 s, consuming 27.49 kJ of energy,
i. e. 36.4 W on average. This is equivalent to 36 381 records
per Joule.

These two results improve the current records [16, 19]
(11 600, 11 300 and 11 600 records per Joule) by a factor
of more than 3. The absolute running times are also bet-
ter than for the competitors. The achieved bandwidth is
around 600 MiB/s when averaging over reading and writing,
equivalent to about 75% peak performance.

For the 1 TB scale, the resulting energy efficiency is only
about a third, compared to the smaller inputs. In addition,
we noticed a degradation in performance after the first run
on freshly reset disks (see Figure 2). Thus, we ran tests
for other input sizes, in the gap between 100 GB and 1 TB,
using the same parameter values. This showed that the
degradation is correlated to the filling degree. The higher
complexity of the merge step can be ruled out to have that
much influence. For the 10 GB and 100 GB inputs, there was
no degradation, even when a multiple of the disk capacity
was written in total. The performance degradation is due to
increasing fragmentation, as explained in Section 2.1. The
I/O rate drops dramatically after the first run formation,
when the merger has to fill the gaps, namely from 632 MiB/s
to 144 MiB/s (averaged over read and write). However, after
the first iteration (writing 3 TB in total), the behavior looks
stable, the disks do not degrade more. Thus, we exclude
the first run and state the average of five runs on already
degraded disks as our result.

We sorted the TB in 21 906 s, consuming 724 kJ of energy,
i. e. 33.0 W on average. This is equivalent to 13 818 records
per Joule.

Still, we beat the previous record [16] (3 425 records per
Joule) by a factor of 4. However, the cited result was
not achieved using the mentioned low-power system, but
with solid server hardware accessing 12 disks and consum-

ing 400 W. Thus, we cannot compete in terms of running
time in this case, our program takes about 4 times as long.

We had even worse results for the I/O bandwidth degrada-
tion when generating the input using regular OS-buffered
I/O. Instead, we wrote 400 MB blocks to the RAID
by piping the gensort output through dd oflag=direct

obs=409600000.

We consider the 1 TB result an artifact of the space scarce-
ness in our system. Using twice as large disks would proba-
bly provide much better performance.

The results for JouleSort are summarized in Table 3.

6. CONCLUSIONS
We have demonstrated, that home server hardware together
with highly tuned, parallelized sorting algorithms can sort
large amounts of data considerably more energy-efficiently
than previous systems.

7. REFERENCES
[1] Alok Aggarwal and Jeffrey S. Vitter. The

input/output complexity of sorting and related
problems. Communications of the ACM,
31(9):1116–1127, 1988.

[2] Deepak Ajwani, Andreas Beckmann, Riko Jacob,
Ulrich Meyer, and Gabriel Moruz. On computational
models for flash memory devices. In Jan Vahrenhold,
editor, Experimental Algorithms, 8th International
Symposium, volume 5526 of Lecture Notes in
Computer Science, pages 16–27, 2009.

[3] David G. Andersen, Jason Franklin, Michael
Kaminsky, Amar Phanishayee, Lawrence Tan, and
Vijay Vasudevan. Fawn: a fast array of wimpy nodes.
In 22nd ACM Symposium on Operating Systems
Principles, pages 1–14, 2009.

[4] Andreas Beckmann, Roman Dementiev, and Johannes
Singler. Building a parallel pipelined external memory
algorithm library. In 23rd IEEE International Parallel
& Distributed Processing Symposium (IPDPS), 2009.

[5] Paolo Bertasi, Marco Bressan, and Enoch Peserico.
psort, yet another fast stable sorting software. In Jan
Vahrenhold, editor, Experimental Algorithms, 8th
International Symposium, volume 5526 of Lecture
Notes in Computer Science, pages 76–88, 2009.

[6] Yanpei Chen and Tracy Xiaoxiao Wang. Energy
efficiency of map reduce. UC Berkeley,
http://www.eecs.berkeley.edu/~ychen2/cs262a/

EnergyEfficientMapReduceReport-Final.pdf, 2008.

[7] Roman Dementiev and Peter Sanders. Asynchronous
parallel disk sorting. In 15th ACM Symposium on
Parallelism in Algorithms and Architectures, pages
138–148, San Diego, 2003.

[8] Boi Feddern. Entdeckungsreise. c’t: magazin für
computer technik, 11/2009:100–104.

[9] Boi Feddern. Platten-Karussel. c’t: magazin für
computer technik, 10/2009:104–107.

http://www.eecs.berkeley.edu/~ychen2/cs262a/EnergyEfficientMapReduceReport-Final.pdf
http://www.eecs.berkeley.edu/~ychen2/cs262a/EnergyEfficientMapReduceReport-Final.pdf

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

kJ s

Energy (DEMSort)
Running Time (DEMSort)

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

 1 2 3 4 5 6
 0
 5
 10
 15
 20
 25
 30
 35
 40

re
c/

J

W

Number of run

Records per Joule (DEMSort)
Average Power (DEMSort)

Figure 2: Degradation of the 1 TB sorting results,
for six consecutive runs after formatting.

JouleSort Category (records) 108 109 1010

Program EcoSort EcoSort DEMSort
Data Volume 10 GB 100 GB 1 TB
Number of records 100 000 000 1 000 000 000 10 000 005 120
Checksum 2faf0ab746e89a8 1dcd615efb9dfe11 12a06d707e22a96eb
Time 76.7±0.64 s 756±7.8 s 21 906±220 s
Energy 2 821±25 J 27.49±0.3 kJ 723.7±7.3 kJ
Average Power 36.8±0.11 W 36.4±0.13 W 33.0±0.03 W
Records per Joule 35 453±313 36 381±399 13 818±139
Typical Bandwidth Run Formation 530 MiB/s avg 600 MiB/s avg 280 MiB/s avg

460 MiB/s read
290 MiB/s write

Typical Bandwidth Merge 640 MiB/s avg 610 MiB/s avg 130 MiB/s avg
160 MiB/s read

110 MiB/s write

Table 3: Summary of the SortBenchmark results.

[10] Boi Feddern. Platten-Karussel. c’t: magazin für
computer technik, 21/2009:142–145.

[11] Eran Gal and Sivan Toledo. Algorithms and data
structures for flash memories. ACM Computing
Surveys, 37(2):138–163, June 2005.

[12] Willis Lang and Jignesh M. Patel. Towards
eco-friendly database management systems. In 4th
Biennial Conference on Innovative Data Systems
Research, 2009.

[13] Chris Nyberg, Charles Koester, Ordinal Technology
Corp, Jim Gray, and Microsoft Corporation. Nsort: a
parallel sorting program for NUMA and SMP
machines, March 19 1997.

[14] Mirko Rahn, Peter Sanders, and Johannes Singler.
Scalable distributed-memory external sorting. CoRR,
abs/0910.2582, 2009.

[15] Mirko Rahn, Peter Sanders, Johannes Singler, and
Tim Kieritz. DEMSort — distributed external
memory sort.
http://sortbenchmark.org/demsort.pdf, 2009.

[16] Suzanne Rivoire, Mehul A. Shah, Parthasarathy
Ranganathan, and Christos Kozyrakis. Joulesort: a
balanced energy-efficiency benchmark. In Chee Yong
Chan, Beng Chin Ooi, and Aoying Zhou, editors,
ACM SIGMOD International Conference on
Management of Data, Beijing, China, June 12-14,
2007, pages 365–376, 2007.

[17] Suzanne Rivoire, Mehul A. Shah, Parthasarathy
Ranganathan, Christos Kozyrakis, and Justin Meza.
Models and metrics to enable energy-efficiency
optimizations. IEEE Computer, 40(12):39–48, 2007.

[18] Johannes Singler, Peter Sanders, and Felix Putze. The
Multi-Core Standard Template Library. In Euro-Par
2007: Parallel Processing, volume 4641 of LNCS,
pages 682–694. Springer-Verlag.

[19] Ranja Sinha and Nikolas Askitis. Ozsort: Sorting
100 GB for less than 87 kJoules, 2009.
http://sortbenchmark.org/OzJoule2009.pdf.

http://sortbenchmark.org/OzJoule2009.pdf

	Introduction
	Hardware Choice
	SSD Issues and Configuration

	Algorithmics
	Implementation
	Sorting 108 and 109 Records Respectively
	Sorting a Terabyte

	Experiments
	System Details
	Energy Measurement
	Setup
	Categorization
	Results

	Conclusions
	References

