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The Apache Hadoop[1] software library is an open source framework that allows for 

the distributed processing of large data sets across clusters of computers using simple 
programming models. It is designed to run on commodity hardware and detect and handle 
failures without relying on the hardware to deliver high availability. Hadoop provides a 
distributed file system (HDFS), a framework for application scheduling and cluster 
resource management (YARN), and a map/reduce[2] implementation for parallel 
processing of large data sets. A core aspect of map/reduce is it performs a distributed sort 
so we used Hadoop TeraSort to run the GraySort and MinuteSort benchmarks.    

 
1. Hadoop Overview 

 
Hadoop HDFS is a distributed file system that runs on commodity hardware, is highly 
fault-tolerant, provides high throughput access to application data, and is suitable for 
applications that have large data sets.  

HDFS has a master/slave architecture. The master is the NameNode, which manages 
the file system namespace and regulates access to files by clients. The slaves are the 
DataNodes, generally one per node, which manage storage attached to the nodes that they 
run on. Internally, a file is split into one or more blocks and these blocks are stored in a 
set of DataNodes. The NameNode determines the mapping of blocks to DataNodes. The 
DataNodes are responsible for serving read and write requests from the file system’s 
clients. The DataNodes also perform block creation, deletion, and replication upon 
instruction from the NameNode. 

HDFS supports a traditional hierarchical file organization. It stores each file as a 
sequence of blocks; all blocks in a file except the last block are the same size. The blocks 
of a file are replicated for fault tolerance. The block size and replication factor are 
configurable per file. The replication factor can be specified at file creation time and can 
be changed later. Files in HDFS are write-once and have strictly one writer at any time. 

The current replication policy in HDFS uses hardware rack awareness. Generally the 
nodes in a cluster are spread across multiple racks, so a simple policy is to place replicas 
on unique racks. This prevents losing data if an entire rack fails and allows use of 
bandwidth from multiple racks when reading data. For the common case, when the 
replication factor is three, HDFS’s placement policy is to put one replica on one node in 
the local rack, another on a node in a different (remote) rack, and the last on a different 
node in the same remote rack. 
 
Hadoop YARN is a resource manager and distributed application framework. It has a 
master/slave architecture where the ResourceManager is the master and the per-node 



slaves are the NodeManagers.  YARN usually runs on the same cluster as Hadoop HDFS 
with NodeManagers running on the same nodes as the Datanodes.  

The ResourceManager manages the cluster resources among the applications in the 
system. It has two main parts, a scheduler and an applications manager. The scheduler is 
responsible for partitioning the cluster resources among the various applications, queues, 
etc.  The applications manager is responsible for accepting application submission, 
launching the first container for executing the application specific ApplicationMaster, 
and provides services for restarting the application on failures.  

The NodeManager is responsible for reporting the node resources to the 
ResourceManager and managing the containers that are running on that node.   
Each type of application that runs on YARN needs to have an ApplicationMaster.  

The ApplicationMaster is responsible for negotiating resources with the 
ResourceManager, coordinating with the NodeManagers to start the allocated containers, 
tracking the container status, and monitoring the progress of the application. 
 
Hadoop MapReduce is an application that runs on Hadoop YARN that is an 
implementation of map/reduce[2] for parallel processing of large data sets. Hadoop 
MapReduce usually splits the input data-set into independent chunks which are processed 
by the map tasks in a completely parallel manner. The framework sorts the outputs of the 
maps, which are then input to the reduce tasks. Typically the input and output are stored 
in a file-system. 
 
2. TeraSort 

 
TeraSort is a standard map/reduce sort, except for a custom partitioner that uses a sorted 
list of N-1 sampled keys that define the key range for each reduce. In particular, all keys 
such that sample[i-1] <= key < sample[i] are sent to reduce i. This guarantees that the 
output of reduce i are all less than the output of reduce i+1.  This allows us to have 
multiple output files and the concatenation of files will be the same as one ordered output 
file. 

The Hadoop TeraSort map/reduce program was used to run GraySort and MinuteSort 
benchmarks, using Hadoop HDFS to store the input and output. 

The input data was generated with gensort version 1.5. For GraySort, the data was 
102.5TB in size, spread across 1025 files each with 100,000,000,000 bytes. For the Indy 
MinuteSort, the data was 1612.22GB (1612223312700 Bytes) in size, spread across 1001 
files each with 1610612700 bytes.  For Daytona MinuteSort, the data was 1497.86 GB 
(1497869841679 Bytes) in size, spread across 920 files each with 1610612700 bytes. 
Both skewed and non-skewed data were generated as needed.  

The data was uploaded into Hadoop HDFS with a replication factor of 3 to ensure it 
persists in the event of a single node failure. Hadoop HDFS splits the files up into blocks 
and spreads them randomly across the cluster nodes.  

TeraSort was then run. It starts by sampling a subset of the input to determine the 
partitioning. The partitions are used to determine which range of keys go to which 
reducer.  It does the sampling by reading a configurable number of sample records 
(defaults to 100,000) from a configurable number of locations (defaults to 10) in the file. 
The sampling is done from the client node where the TeraSort job is launched. The 



locations it reads the samples from are spread evenly across the input. In order to 
determine those locations, it first calculates the input splits of the file. The input splits are 
based on the block size or a user specified minimum split size. Once it determines the 
locations to read from, it then uses a thread per sample location to read the samples in 
parallel.  Each thread reads the specified number of samples divided by the specified 
number of locations records.  The sample keys are then sorted with QuickSort and down 
sampled to find even split points for the partitions. It then writes the partitions to a 
partition file in HDFS that will later be read by the maps.  

For GraySort the sample size was 300,000 keys and the number of locations was 250, 
for the Daytona MinuteSort the sample size was 300,000 keys and the number of 
locations was 185, and for the Indy MinuteSort the sample size was 100,000 keys and the 
number of locations was 10.  

For GraySort, it took 23670ms to compute the base input splits and 1789ms to read 
the samples and compute the partitions. For Daytona MinuteSort, it took 1285ms to 
compute the base input splits and 755ms to read the samples and compute the partitions.  

The maps then run in parallel across the cluster. It uses the input splits to determine 
how many maps to run and the data each map will read. Hadoop MapReduce tries to 
schedule each map on the same node as the block(s) it is reading from HDFS.  If it cannot 
get node locality, it then tries to get rack locality (a node within the same rack). If it 
cannot get rack locality then it chooses any node. In our case, the input data had a 
replication factor of 3 so it had 3 nodes to try to place each map to get node local data 
locality. 

For GraySort, the job used 31775 maps, for the Indy MinuteSort the job used 6006 
maps and for the Daytona MinuteSort the job used 5580 maps.  

Each map reads its input data, sorts the data, and then partitions it per reducer.  The 
TeraSort TotalOrderPartitioner was used for GraySort and the Daytona MinuteSort. It 
uses the partition file written to HDFS based on the sampling to build a two level trie that 
quickly indexes into the list of sample keys based on the first two bytes of the key. If 
more then one partition maps to a leaf in the trie, it iterates through those partitions and 
compares the entire key to that partition key to find the exact match.  The TeraSort 
SimplePartitioner was used in the Indy MinuteSort benchmark. The SimplePartitioner is a 
total order partitioner that assigns keys based on their first 3 bytes. It assumes a flat 
distribution. 

Once enough of the maps have completed (a user specified percent), the reducers 
launch and fetch the data from the maps. For GraySort the job used 10,000 reducers, for 
the Indy Sort the job used 2600 reducers, and for the Daytona MinuteSort the job used 
2790 reducers.  Each reducer generates an output file in HDFS. The output was sync’d to 
disk as required by the benchmark and for the Daytona benchmarks the output had a 
replication factor of 3 to meet the rule that the output must persist in the event of a single 
node failure. For the Indy MinuteSort benchmark the output had a replication factor of 1 
to reduce any overhead in writing the extra replications. 

The output was validated using both valsort version 1.5 and Hadoop TeraValidate. 
TeraValidate ensures that the output is globally sorted. It creates one map per a file in the 
output directory and each map ensures that each key is less than or equal to the previous 
one. The map also generates records with the first and last keys of the file and the reduce 
ensures that the first key of file i is greater that the last key of file i-1. Any problems are 



reported as output of the reduce with the keys that are out of order. valsort was run on 
each of the output files using the –o option, the summary files were then concatenated 
together and then valsort  –s was run on the concatenated file.  Both valsort and 
TeraValidate generated the same checksums.  TeraChecksum was used on the input to 
verify the checksum of the input matched the output. TeraChecksum computes the 128 
bit sum of the CRC32 of each key/value pair. Each map computes the sum of its input 
and emits a single 128 bit sum. There is a single reduce that adds the sums from each 
map.  

 
3. Hardware and Operating System 

• Approximately 2100 nodes for GraySort and 2200 nodes for MinuteSort 
• System: Dell R720xd, 2 x Xeon E5-2630 2.30GHz, 62.3GB / 64GB 1333MHz 

DDR3, 12 x 3TB SATA 
• Processors:  2 x Xeon E5-2630 2.30GHz, 7.2GT QPI (HT enabled, 12 cores, 24 

threads) - Sandy Bridge-EP C2, 64-bit, 6-core, 32nm, L3: 15MB 
• OS: RHEL Server 6.3, Linux 2.6.32-279.19.1.el6.YAHOO.20130104.x86_64 

x86_64, 64-bit 
• Network: eth0 (bnx2x): 10Gb/s <full-duplex> 
• 40 nodes/rack 160Gbps rack to spine. 2.5:1 subscription.  
• Oracle JDK 1.7 (u17) - 64 bit 

       
4. Software and Configuration  

 
The version of Hadoop used was Hadoop 0.23.7. Hadoop 0.23.7 is an early branch of 

the Hadoop 2.X line that Yahoo has used to stabilize YARN. It is available for download 
at hadoop.apache.org.  

The configuration used in this benchmark is close to what Yahoo uses in production 
with the exception that Hadoop security was turned off.  Compression was also turned off 
on all parts (input, intermediate, and output). We modified job parameters to change 
some of the time outs, sort and spill configurations, and map/reduce memory sizes. The 
only source code modification made for GraySort was to the ExampleDriver.java to 
allow TeraChecksum to be easily called.  For MinuteSort, some minor Hadoop source 
code modifications were made to remove extra logging messages and change some 
hardcoded wait/retry periods. The TeraSort suite was repackaged to be the only thing in 
the jar. 

Between the GraySort runs, Linux drop caches was used on all the hosts to flush 
anything out of memory.  I also alternated between the non-skewed and skewed data 
which should have also flushed the other data set from main memory.  For the 
MinuteSort runs, the benchmark was run 15 consecutive times alternating between 
TeraSort and TeraChecksum of a very large amount of data (154.6TB) in order to flush 
any data from the TeraSort out of memory.  The median time of the 15 runs of TeraSort 
was reported. 

Each run was measured on the client side using the Linux ‘time’ utility. 
 
 



5. Results 
 
According to the rules, the results are reported such that a terabyte = 1012 bytes, 

gigabyte = 109 bytes.  For the Daytona benchmarks, the skewed data had to be sorted in 
no more than twice the elapsed time of the non-skewed data.   

The only benchmark that made the official benchmark entry this year was the 
GraySort. We missed the deadline on submitting the MinuteSort results. 
   
Benchmark Data Type Amount of 

Data 
Sorted  

Time Rate Duplicate 
Keys 

Daytona 
GraySort 

non-skewed  102.5 TB 72 minutes 
8.053 
seconds 

1.42 TB 
per 
minute 

0 

Daytona 
GraySort 

skewed  102.5 TB 117 minutes 
48.261 
seconds 

0.87 TB 
per 
minute 

31867643140 

Indy 
MinuteSort 

non-skewed  1612.22	
  GB 58.027 
seconds 
 

 0 

Daytona 
MinuteSort 

non-skewed 1497.86 GB 59.223 
seconds 

 0 

Daytona 
MinuteSort 

skewed 1497.86 GB 1 minute 
27.242 
seconds 
 

 0 
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