
GraySort and MinuteSort at Yahoo on
Hadoop 0.23

Thomas Graves

Yahoo!
May, 2013

The Apache Hadoop[1] software library is an open source framework that allows for

the distributed processing of large data sets across clusters of computers using simple
programming models. It is designed to run on commodity hardware and detect and handle
failures without relying on the hardware to deliver high availability. Hadoop provides a
distributed file system (HDFS), a framework for application scheduling and cluster
resource management (YARN), and a map/reduce[2] implementation for parallel
processing of large data sets. A core aspect of map/reduce is it performs a distributed sort
so we used Hadoop TeraSort to run the GraySort and MinuteSort benchmarks.

1. Hadoop Overview

Hadoop HDFS is a distributed file system that runs on commodity hardware, is highly
fault-tolerant, provides high throughput access to application data, and is suitable for
applications that have large data sets.

HDFS has a master/slave architecture. The master is the NameNode, which manages
the file system namespace and regulates access to files by clients. The slaves are the
DataNodes, generally one per node, which manage storage attached to the nodes that they
run on. Internally, a file is split into one or more blocks and these blocks are stored in a
set of DataNodes. The NameNode determines the mapping of blocks to DataNodes. The
DataNodes are responsible for serving read and write requests from the file system’s
clients. The DataNodes also perform block creation, deletion, and replication upon
instruction from the NameNode.

HDFS supports a traditional hierarchical file organization. It stores each file as a
sequence of blocks; all blocks in a file except the last block are the same size. The blocks
of a file are replicated for fault tolerance. The block size and replication factor are
configurable per file. The replication factor can be specified at file creation time and can
be changed later. Files in HDFS are write-once and have strictly one writer at any time.

The current replication policy in HDFS uses hardware rack awareness. Generally the
nodes in a cluster are spread across multiple racks, so a simple policy is to place replicas
on unique racks. This prevents losing data if an entire rack fails and allows use of
bandwidth from multiple racks when reading data. For the common case, when the
replication factor is three, HDFS’s placement policy is to put one replica on one node in
the local rack, another on a node in a different (remote) rack, and the last on a different
node in the same remote rack.

Hadoop YARN is a resource manager and distributed application framework. It has a
master/slave architecture where the ResourceManager is the master and the per-node

slaves are the NodeManagers. YARN usually runs on the same cluster as Hadoop HDFS
with NodeManagers running on the same nodes as the Datanodes.

The ResourceManager manages the cluster resources among the applications in the
system. It has two main parts, a scheduler and an applications manager. The scheduler is
responsible for partitioning the cluster resources among the various applications, queues,
etc. The applications manager is responsible for accepting application submission,
launching the first container for executing the application specific ApplicationMaster,
and provides services for restarting the application on failures.

The NodeManager is responsible for reporting the node resources to the
ResourceManager and managing the containers that are running on that node.
Each type of application that runs on YARN needs to have an ApplicationMaster.

The ApplicationMaster is responsible for negotiating resources with the
ResourceManager, coordinating with the NodeManagers to start the allocated containers,
tracking the container status, and monitoring the progress of the application.

Hadoop MapReduce is an application that runs on Hadoop YARN that is an
implementation of map/reduce[2] for parallel processing of large data sets. Hadoop
MapReduce usually splits the input data-set into independent chunks which are processed
by the map tasks in a completely parallel manner. The framework sorts the outputs of the
maps, which are then input to the reduce tasks. Typically the input and output are stored
in a file-system.

2. TeraSort

TeraSort is a standard map/reduce sort, except for a custom partitioner that uses a sorted
list of N-1 sampled keys that define the key range for each reduce. In particular, all keys
such that sample[i-1] <= key < sample[i] are sent to reduce i. This guarantees that the
output of reduce i are all less than the output of reduce i+1. This allows us to have
multiple output files and the concatenation of files will be the same as one ordered output
file.

The Hadoop TeraSort map/reduce program was used to run GraySort and MinuteSort
benchmarks, using Hadoop HDFS to store the input and output.

The input data was generated with gensort version 1.5. For GraySort, the data was
102.5TB in size, spread across 1025 files each with 100,000,000,000 bytes. For the Indy
MinuteSort, the data was 1612.22GB (1612223312700 Bytes) in size, spread across 1001
files each with 1610612700 bytes. For Daytona MinuteSort, the data was 1497.86 GB
(1497869841679 Bytes) in size, spread across 920 files each with 1610612700 bytes.
Both skewed and non-skewed data were generated as needed.

The data was uploaded into Hadoop HDFS with a replication factor of 3 to ensure it
persists in the event of a single node failure. Hadoop HDFS splits the files up into blocks
and spreads them randomly across the cluster nodes.

TeraSort was then run. It starts by sampling a subset of the input to determine the
partitioning. The partitions are used to determine which range of keys go to which
reducer. It does the sampling by reading a configurable number of sample records
(defaults to 100,000) from a configurable number of locations (defaults to 10) in the file.
The sampling is done from the client node where the TeraSort job is launched. The

locations it reads the samples from are spread evenly across the input. In order to
determine those locations, it first calculates the input splits of the file. The input splits are
based on the block size or a user specified minimum split size. Once it determines the
locations to read from, it then uses a thread per sample location to read the samples in
parallel. Each thread reads the specified number of samples divided by the specified
number of locations records. The sample keys are then sorted with QuickSort and down
sampled to find even split points for the partitions. It then writes the partitions to a
partition file in HDFS that will later be read by the maps.

For GraySort the sample size was 300,000 keys and the number of locations was 250,
for the Daytona MinuteSort the sample size was 300,000 keys and the number of
locations was 185, and for the Indy MinuteSort the sample size was 100,000 keys and the
number of locations was 10.

For GraySort, it took 23670ms to compute the base input splits and 1789ms to read
the samples and compute the partitions. For Daytona MinuteSort, it took 1285ms to
compute the base input splits and 755ms to read the samples and compute the partitions.

The maps then run in parallel across the cluster. It uses the input splits to determine
how many maps to run and the data each map will read. Hadoop MapReduce tries to
schedule each map on the same node as the block(s) it is reading from HDFS. If it cannot
get node locality, it then tries to get rack locality (a node within the same rack). If it
cannot get rack locality then it chooses any node. In our case, the input data had a
replication factor of 3 so it had 3 nodes to try to place each map to get node local data
locality.

For GraySort, the job used 31775 maps, for the Indy MinuteSort the job used 6006
maps and for the Daytona MinuteSort the job used 5580 maps.

Each map reads its input data, sorts the data, and then partitions it per reducer. The
TeraSort TotalOrderPartitioner was used for GraySort and the Daytona MinuteSort. It
uses the partition file written to HDFS based on the sampling to build a two level trie that
quickly indexes into the list of sample keys based on the first two bytes of the key. If
more then one partition maps to a leaf in the trie, it iterates through those partitions and
compares the entire key to that partition key to find the exact match. The TeraSort
SimplePartitioner was used in the Indy MinuteSort benchmark. The SimplePartitioner is a
total order partitioner that assigns keys based on their first 3 bytes. It assumes a flat
distribution.

Once enough of the maps have completed (a user specified percent), the reducers
launch and fetch the data from the maps. For GraySort the job used 10,000 reducers, for
the Indy Sort the job used 2600 reducers, and for the Daytona MinuteSort the job used
2790 reducers. Each reducer generates an output file in HDFS. The output was sync’d to
disk as required by the benchmark and for the Daytona benchmarks the output had a
replication factor of 3 to meet the rule that the output must persist in the event of a single
node failure. For the Indy MinuteSort benchmark the output had a replication factor of 1
to reduce any overhead in writing the extra replications.

The output was validated using both valsort version 1.5 and Hadoop TeraValidate.
TeraValidate ensures that the output is globally sorted. It creates one map per a file in the
output directory and each map ensures that each key is less than or equal to the previous
one. The map also generates records with the first and last keys of the file and the reduce
ensures that the first key of file i is greater that the last key of file i-1. Any problems are

reported as output of the reduce with the keys that are out of order. valsort was run on
each of the output files using the –o option, the summary files were then concatenated
together and then valsort –s was run on the concatenated file. Both valsort and
TeraValidate generated the same checksums. TeraChecksum was used on the input to
verify the checksum of the input matched the output. TeraChecksum computes the 128
bit sum of the CRC32 of each key/value pair. Each map computes the sum of its input
and emits a single 128 bit sum. There is a single reduce that adds the sums from each
map.

3. Hardware and Operating System

• Approximately 2100 nodes for GraySort and 2200 nodes for MinuteSort
• System: Dell R720xd, 2 x Xeon E5-2630 2.30GHz, 62.3GB / 64GB 1333MHz

DDR3, 12 x 3TB SATA
• Processors: 2 x Xeon E5-2630 2.30GHz, 7.2GT QPI (HT enabled, 12 cores, 24

threads) - Sandy Bridge-EP C2, 64-bit, 6-core, 32nm, L3: 15MB
• OS: RHEL Server 6.3, Linux 2.6.32-279.19.1.el6.YAHOO.20130104.x86_64

x86_64, 64-bit
• Network: eth0 (bnx2x): 10Gb/s <full-duplex>
• 40 nodes/rack 160Gbps rack to spine. 2.5:1 subscription.
• Oracle JDK 1.7 (u17) - 64 bit

4. Software and Configuration

The version of Hadoop used was Hadoop 0.23.7. Hadoop 0.23.7 is an early branch of

the Hadoop 2.X line that Yahoo has used to stabilize YARN. It is available for download
at hadoop.apache.org.

The configuration used in this benchmark is close to what Yahoo uses in production
with the exception that Hadoop security was turned off. Compression was also turned off
on all parts (input, intermediate, and output). We modified job parameters to change
some of the time outs, sort and spill configurations, and map/reduce memory sizes. The
only source code modification made for GraySort was to the ExampleDriver.java to
allow TeraChecksum to be easily called. For MinuteSort, some minor Hadoop source
code modifications were made to remove extra logging messages and change some
hardcoded wait/retry periods. The TeraSort suite was repackaged to be the only thing in
the jar.

Between the GraySort runs, Linux drop caches was used on all the hosts to flush
anything out of memory. I also alternated between the non-skewed and skewed data
which should have also flushed the other data set from main memory. For the
MinuteSort runs, the benchmark was run 15 consecutive times alternating between
TeraSort and TeraChecksum of a very large amount of data (154.6TB) in order to flush
any data from the TeraSort out of memory. The median time of the 15 runs of TeraSort
was reported.

Each run was measured on the client side using the Linux ‘time’ utility.

5. Results

According to the rules, the results are reported such that a terabyte = 1012 bytes,

gigabyte = 109 bytes. For the Daytona benchmarks, the skewed data had to be sorted in
no more than twice the elapsed time of the non-skewed data.

The only benchmark that made the official benchmark entry this year was the
GraySort. We missed the deadline on submitting the MinuteSort results.

Benchmark Data Type Amount of

Data
Sorted

Time Rate Duplicate
Keys

Daytona
GraySort

non-skewed 102.5 TB 72 minutes
8.053
seconds

1.42 TB
per
minute

0

Daytona
GraySort

skewed 102.5 TB 117 minutes
48.261
seconds

0.87 TB
per
minute

31867643140

Indy
MinuteSort

non-skewed 1612.22	
 GB 58.027
seconds

 0

Daytona
MinuteSort

non-skewed 1497.86 GB 59.223
seconds

 0

Daytona
MinuteSort

skewed 1497.86 GB 1 minute
27.242
seconds

 0

6. Acknowledgements

I’d like to thank Balaji Narayanan and Rajiv Chittajallu from the Yahoo Grid

Operations team for setting up the hardware and providing support while these
benchmarks were being run. I’d also like to thank Nathan Roberts, Bobby Evans, Kihwal
Lee, and Jason Lowe from the Yahoo Hadoop development team for providing input.

7. References

7.1. Apache. Hadoop. http://hadoop.apache.org/.
7.2. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on

largeclusters. In Sixth Symposium on Operating System Design and
Implementation, San Francisco, CA, December 2004.

More info at http://sortbenchmark.org/ and http://sortbenchmark.org/FAQ-2013.html

