
Winning a 60 Second Dash with a Yellow

Elephant

Owen O’Malley and Arun C. Murthy
Yahoo!

owen@yahoo-inc.com and acm@yahoo-inc.com

April 2009

Apache Hadoop is a open source software framework that dramatically sim-
plifies writing distributed data intensive applications. It provides a distributed
file system, which is modeled after the Google File System[2], and a map/reduce[1]
implementation that manages distributed computation. Jim Gray defined a
benchmark to compare large sorting programs. Since the core of map/reduce is
a distributed sort, most of the custom code is glue to get the desired behavior.

1 Benchmark Rules

Jim’s Gray’s sort benchmark consists of a set of many related benchmarks, each
with their own rules. All of the sort benchmarks measure the time to sort
different numbers of 100 byte records. The first 10 bytes of each record is the
key and the rest is the value. The minute sort must finish end to end in less
than a minute. The Gray sort must sort more than 100 terabytes and must
run for at least an hour.

• The input data must precisely match the data generated by the C data
generator.

• The input must not be in the operating system’s file cache when the job
starts.. Under Linux, this requires using the memory for something else
between sorting runs.

• The input and output data must not be compressed.

• The output must not overwrite the input.

• The output must be synced to disk.

• The 128 bit sum of the crc32’s of each key/value pair must be calculated
for the input and output. Naturally, they must be identical.

1

http://people.apache.org/~omalley
http://people.apache.org/~acmurthy
http://www.yahoo.com/
http://hadoop.apache.org/core


• The output may be divided into multiple output files, but it must be
totally ordered (simply concatenating the output files must produce the
completely sorted output).

• Starting and distributing the application to the cluster must be included
in the execution time.

• Any sampling must be included in the execution time.

2 Hadoop implementation

We extended the programs from last year to create and manipulate the new
binary format and match the new rules. There are now 4 Hadoop map/reduce
applications to support the benchmark:

1. TeraGen is a map/reduce program to generate the data.

2. TeraSort samples the input data and uses map/reduce to sort the data
into a total order.

3. TeraSum is a map/reduce program computes the 128 bit sum of the crc32
of each key/value pair.

4. TeraValidate is a map/reduce program that validates the output is
sorted and computes the sum of the checksums as TeraSum.

The update to the terasort programs will be checked in as HADOOP-5716.
TeraGen generates input data for the sort that is byte for byte equivalent

to the C version that was released in March of 2009, including specific keys and
values. It divides the desired number of rows by the desired number of tasks
and assigns ranges of rows to each map. The map jumps the random number
generator to the correct value for the first row and generates the following rows.

TeraSort is a standard map/reduce sort, except for a custom partitioner
that ensures that all of the keys in reduce N are after all of the keys in reduce
N − 1. This is a requirement of the contest so that the output of the sort is
totally ordered, even if it is divided up by reduce.

We wrote an input and output format, used by all 4 applications to read
and write the files in the new format.

TeraSum computes the 128 bit sum of the CRC32 of each key/value pair.
Each map computes the sum of its input and emits a single 128 bit sum. There
is a single reduce that adds the sums from each map. We used this program
on the input directory to calculate the sum of the checksums of each key/value
pair to check the correctness of the output of the sort. We also used TeraSum
on a distinct dataset that was larger than the total RAM in the cluster to flush
the Linux file cache between runs of the small (500 GB and 1TB) sorts.

TeraValidate ensures that the output is globally sorted. It creates one map
per file in the output directory and each map ensures that each key is less than
or equal to the previous one. The map also generates records with the first and

2

http://issues.apache.org/jira/brows/HADOOP-5716


last keys of the file and the reduce ensures that the first key of file i is greater
that the last key of file i−1. Any problems are reported as output of the reduce
with the keys that are out of order. Additionally, TeraValidate calculates the
sum of checksums of the output directory.

3 Hardware and Operating System

We ran our benchmarks on Yahoo’s Hammer cluster. Hammer’s hardware is
very similar to the hardware that we used in last year’s terabyte sort. The
hardware and operating system details are:

• approximately 3800 nodes (in such a large cluster, nodes are always down)

• 2 quad core Xeons @ 2.5ghz per node

• 4 SATA disks per node

• 8G RAM per node (upgraded to 16GB before the petabyte sort)

• 1 gigabit ethernet on each node

• 40 nodes per rack

• 8 gigabit ethernet uplinks from each rack to the core

• Red Hat Enterprise Linux Server Release 5.1 (kernel 2.6.18)

• Sun Java JDK (1.6.0 05-b13 and 1.6.0 13-b03) (32 and 64 bit)

We hit a JVM bug in 1.6.0 05-b13 on the larger sorts (100TB and 1PB) and
switched over to the later JVM, which resolved the issue. For the larger sorts,
we used 64 bit JVMs for the Name Node and Job Tracker.

4 Software and Configuration

The version of Hadoop we used was a private branch of trunk that was started
in January 2009, which is after the 0.20 branch was feature frozen. We used git
to manage our branch and it allowed us to easily coordinate our work, track our
changes, and resynchronize with the current Hadoop trunk.

The changes include:

1. Updated the terasort example in the Hadoop code base to match the
dataset defined by the rule changes in the benchmark from March of 2009.
(HADOOP-5716)

2. We reimplemented the reducer side of Hadoop’s shuffle. The redesign
improved the performance of the shuffle and removed bottlenecks and over-
throttling. It also made the code more maintainable and understandable
by breaking a 3000 line Java file into multiple classes with a clean set of
interfaces. (HADOOP-5223)

3

http://issues.apache.org/jira/brows/HADOOP-5716
http://issues.apache.org/jira/brows/HADOOP-5223


3. The new shuffle also fetches multiple map outputs from the same node
over each connection rather than one at a time. Fetching multiple map
outputs at the same time avoids connection setup costs and also avoids
the round trip while the server responds to the request. (HADOOP-1338)

4. Allowed configuring timeouts on the shuffle connections and we shortened
them for the small sorts. We observed cases where the connections for
the shuffle would hang until the timeout, which made low latency jobs
impossibly long. (HADOOP-5789)

5. Set TCP no-delay and more frequent pings between the Task and the Task
Tracker to reduce latency in detecting problems. (HADOOP-5788)

6. We added some protection code to detect incorrect data being transmitted
in the shuffle from causing the reduce to fail. It appears this is either a
JVM NIO bug or Jetty bug that likely affects 0.20 and trunk under heavy
load. (HADOOP-5783)

7. We used LZO compression on the map outputs. On the new dataset, LZO
compresses down to 45% of the original size. By comparison, the dataset
from last year compresses to 20% of the original size. Last year, the shuffle
would run out of direct buffers if we used compression on the map outputs.

8. We implemented memory to memory merges in the reduce during the
shuffle to combine the map outputs in memory before we finish the shuffle,
thereby reducing the work needed when the reduce is running.

9. We multi-threaded the sampling code that read the input set to find the
partition points between the reduces. We also wrote a simple partitioner
that assumes the keys are evenly distributed. Since the new dataset does
not require sampling, the simple partitioner produces very even partitions.
(HADOOP-4946)

10. On the smaller clusters, we configured the system with faster heartbeat
cycles from the Task Trackers to the Job Tracker (it defaults to 10 secs
/ 1000 nodes, but we made it configurable and brought it down to 2
seconds/1000 nodes to provide lower latency) (HADOOP-5784)

11. Typically the Job Tracker assigns tasks to Task Trackers on a first come
first served basis. This greedy assignment of tasks did not lead to good
data locality. However, by taking a global view and placing all of the map
tasks at once, the system achieves much better locality. Rather than im-
plement global scheduling for all of Hadoop, which would be much harder,
we implemented a global scheduler for the terasort example in the input
format. Basically, the input format computes the splits and assigns work
to the nodes that have the fewest blocks first. For a node that has more
blocks than map slots, it picks the block that have the fewest remaining
locations left. This greedy global algorithm seems to get very good local-
ity. The input format would schedule the maps and then change the input

4

http://issues.apache.org/jira/brows/HADOOP-1338
http://issues.apache.org/jira/brows/HADOOP-5789
http://issues.apache.org/jira/brows/HADOOP-5788
http://issues.apache.org/jira/brows/HADOOP-5783
http://issues.apache.org/jira/brows/HADOOP-4946
http://issues.apache.org/jira/brows/HADOOP-5784


split descriptions to only have a single location instead of the original 3.
This increased task locality by 40% or so over the greedy scheduler.

12. Hadoop 0.20 added setup and cleanup tasks. Since they are not required
for the sort benchmarks, we allow them to be disabled to reduce the latency
of starting and stopping the job. (HADOOP-5785)

13. We discovered a performance problem where in some contexts the cost of
using the JNI-based CRC32 was very high. By implementing it in pure
Java, the average case is a little slower, but the worst case is much better.
(HADOOP-5598)

14. We found and removed some hard-coded wait loops from the framework
that don’t matter for large jobs, but can seriously slow down low latency
jobs.

15. Allowed setting the logging level for the tasks, so that we could cut down
on logging. When running for ”real” we configure the logging level to
WARN instead of the default INFO. Reducing the amount of logging has
a huge impact on the performance of the system, but obviously makes
debugging and analysis much harder. (HADOOP-5786)

16. One optimization that we didn’t finish is to optimize the job planning
code. Currently, it uses an RPC to the Name Node for each input file,
which we have observed taking a substantial amount of time. For the
terabyte sort, our investigations show that we could save about 4 seconds
out of the 8 that were spent on setting up the job. (HADOOP-5795)

5 Results

Hadoop has made a lot of progress in the last year and we were able to run
much lower latency jobs as well as much larger jobs. Note that in any large
cluster and distributed application, there are a lot of moving pieces and thus
we have seen a wide variation in execution times. As Hadoop evolves and be-
comes more graceful in the presence of hardware degradation and failure, this
variation should smooth out. The best times for each of the listed sort sizes were:

Bytes Nodes Maps Reduces Replication Time
5 ∗ 1011 1406 8000 2600 1 59 seconds

1012 1460 8000 2700 1 62 seconds
1014 3452 190,000 10,000 2 173 minutes
1015 3658 80,000 20,000 2 975 minutes

Within the rules for the 2009 Gray sort, our 500 GB sort set a new record for
the minute sort and the 1PB sort set a new record of 1.03 TB/minute. The 62
second terabyte sort would have set a new record, but the terabyte benchmark
that we won last year has been retired. (Clearly the minute sort and terabyte

5

http://issues.apache.org/jira/brows/HADOOP-5785
http://issues.apache.org/jira/brows/HADOOP-5598
http://issues.apache.org/jira/brows/HADOOP-5786
http://issues.apache.org/jira/brows/HADOOP-5795


sort are rapidly converging, and thus it is not a loss.) One piece of trivia is that
only the petabyte dataset had any duplicate keys (40 of them).

Because the smaller sorts needed lower latency and faster network, we only
used part of the cluster for those runs. In particular, instead of our normal
5:1 over subscription between racks, we limited it to 16 nodes in each rack for
a 2:1 over subscription. The smaller runs can also use output replication of 1,
because they only take minutes to run and run on smaller clusters, the likelihood
of a node failing is fairly low. On the larger runs, failure is expected and thus
replication of 2 is required. HDFS protects against data loss during rack failure
by writing the second replica on a different rack and thus writing the second
replica is relatively slow.

We’ve included the timelines for the jobs counting from the job submission at
the Job Tracker. The diagrams show the number of tasks running at each point
in time. While maps only have a single phase, the reduces have three: shuffle,
merge, and reduce. The shuffle is the transfer of the data from the maps.
Merge doesn’t happen in these benchmarks, because none of the reduces need
multiple levels of merges. Finally, the reduce phase is where the final merge
and writing to HDFS happens. I’ve also included a category named waste
that represents task attempts that were running, but ended up either failing,
or being killed (often as speculatively executed task attempts). The job logs
and configuration for the four runs, which are the raw data for the charts, are
available on http://people.apache.org/ omalley/tera-2009/.

If you compare this years charts to last year’s, you’ll notice that tasks are
launching much faster now. Last year we only launched one task per heartbeat,
so it took 40 seconds to get all of the tasks launched. Now, Hadoop will fill up
a Task Tracker in a single heartbeat. Reducing that job launch overhead is very
important for getting runs under a minute.

As with last year, we ran with significantly larger tasks than the defaults
for Hadoop. Even with the new more aggressive shuffle, minimizing the number
of transfers (maps * reduces) is very important to the performance of the job.
Notice that in the petabyte sort, each map is processing 15 GB instead of the
default 128 MB and each reduce is handling 50 GB. When we ran the petabyte
with more typical values 1.5 GB / map, it took 40 hours to finish. Therefore,
to increase throughput, it makes sense to consider increasing the default block
size, which translates into the default map size, to at least up to 1 GB.

6 Comments on the Rule Changes

The group that runs the Gray Sort Benchmark made very substantial changes
to the rules this year. The changes were not announced; but rather appeared
on the website in March. We feel that it was too late to make rule changes
and that the benchmark should have been changed next year. We’d also like to
point out that while most of the changes to the data generator were positive, it
was a poor choice to remove the skewed distribution of the keys. The previously
skewed distribution required sampling of the input to pick good partition points

6

http://people.apache.org/~omalley/tera-2009/


between the reduces. The current dataset picks keys so completely random that
sampling is counter productive and yields even less distributions between the
reduces.

References

[1] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Sixth Symposium on Operating System Design and Implementa-
tion, San Francisco, CA, December 2004.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In 19th
Symposium on Operating Systems Principles, Lake George, NY, October
2003. ACM.

7



Figure 1: 500 GB sort tasks across time

Figure 2: 1 TB sort tasks across time

8



Figure 3: 100 TB sort tasks across time

Figure 4: 1 PB sort tasks across time

9


	Benchmark Rules
	Hadoop implementation
	Hardware and Operating System
	Software and Configuration
	Results
	Comments on the Rule Changes

