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Abstract

Using a modi�ed implementation of the HPVM-MinuteSort we benchmarked a heterogeneous con�g-

uration of a HPVM cluster. We pinpointed bottlenecks, miscon�gurations and the upperbound perfor-
mance of the several components of the cluster con�guration. The benchmark sorted 21.8 GB of data in
less than minute, which improves on the previous record for more than 100%. The cluster features two

kinds of systems that di�ers in the amount of memory, IO capability and CPU power. The MinuteSort
was designed as a onepass sort, which moves the data from the nodes with more IO capabilities to the
nodes with more memory and CPU power to be sorted. After some troubleshooting, the design allowed

us to exhaust the memory of the NetServers. To launch the application we used Catapult, a DCOM
based tool to start up remote applicatoins.

1 Introduction

Disk-to-disk sorting is a very good benchmark to measure the system capabilities for data movement[6, 1],
and well known in the database community. In a parallel implementation, as in the HPVM-MinuteSort[8], the
benchmark stresses the IO, communication and memory subsystem. Therefore, we selected the MinuteSort
to benchmark a heterogeneous HPVM cluster which features two kinds of systems, those with a rich IO
capability given by a four disk stripe set, and those with more CPU power and memory capacity. This
presented an interesting problem to exploit both, the large memory capacity and IO power of the cluster.
The MinuteSort metric is the amount of data or records sorted in a minute, and the input data is resident
on disk and the output data is written back to disk.

The HPVM cluster at UCSD1 contains 32 Kayak sytems and 32 NetServers, all of them dual Pentium
III, for a total of 128 processors. The network is a Myrinet switched interconnect with bidirectional links of
160 MB/s, with 1.2 GB of peak bisection bandwidth as a result of the topology used. The Kayak systems
feature 300 MHz processors and 384 MB SDRAM each, whereas the Netservers feature 400 MHz processors
and 1 GB SDRAM each. Also, the Kayaks IO capability was expanded with a stripe set of four IDE disks
attached to a 3Ware controller which performs hardware striping, plus an IBM IDE disk used as a system
disk. The NetServers feature only two logically separated SCSI disks and one of them is used as a system
disk.

1http://www-csag.ucsd.edu/projects/cluster.html
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In order to �nd the upperbound performance of the IO subsystems of both machine types, we performed
tests for sequential IO, the results for the stripe set showed a peak performance for reading of 55 MB/s and
45 MB/s for writing. Each SCSI disk in the NetServers performed equally for reading and writing, peaking
at 16 MB/s. Testing also revealed that the switches of the Myrinet network could only achieve about 80%
of the total bisection bandwidth, and we realized that the best performance was achieved by minimizing the
contention in the network links by making sure that two or more nodes were not sending data to the same
machine at the same time. We also rewired the cluster in order to double the bisection bandwidth, which
does not imply the addition of new hardware but just a change of topology.

After tuning and troubleshooting the application, it performed close to the expected performance, with
some extra overhead in the overlapped IO and communication stage because of the contention mentioned
above, which was only reduced enough to fully populate the memory of the sorting nodes. The best perfom-
rance was measured in 21.8 GB in 56 seconds, 7 seconds for startup and 49 seconds to sort. The aggregate
bandwidth for the reading stage was 768 GB/s and 1.37 GB/s for the writing stage.

2 Cluster Performance

To make sure that our design would make the most of the resources we had in our cluster, we �rst tested
the IO subsystems of both IO and sorting nodes, plus the network bandwidth that the network could deliver
in an all-to-all and point to point communication pattern. The former takes place in the IO-communication
overlap of the �rst stage, and the later in the last stage when data already sorted is sent back to the IO
nodes for writing. Below we described the tests and performance results for IO and communication.

2.1 IO Performance

In Table 1 we show the disk speci�cations of all the di�erent disks on the cluster. In both cases there is a
single disk used for system activity such that all the IO generated by the sorting application was not going
to contend for disk use. The selection of disk type, capacity and other speci�cation, was not driven by the
sorting application, the goal was to create a terabyte storage server and the focus was price and capacity,
not disk speed. Also, the reason for placing most of the disks in the systems with less memory was due to
expandability constrains of the PC boxes.

Type Controller Speed (RPM) Capacity (MB) Units/Node
Maxtor DiamondMax Plus 5120 3Ware 7200 20.5 4
IBM Deskstar 22GXP IDE 7200 22.0 1
Barracuda SCSI 7200 18.2 2

Table 1: Speci�cations of the disk drives installed in the cluster, the DiamondMax drives form a 4 drive
strpeset and the IBM works as a system disk in the Kayak systems. For the NetServers, one of the two SCSI
disks is used as system disk and the second one is used for applications IO transactions.

In order to take advantage of all the potential IO bandwidth in the Kayaks, we used the 3Ware controllers2

for hardware stripping, which scales almost linearly[5] for up to four drives. These allowed us to concentrate
on how to use the potential bandwidth instead of trying to generate it by means of software striping. Finally
in both kinds of systems, one disk is used as system disk, and the sorting application does not make use of
them.

In order to measure the real performance of the stripe set and the SCSI drives, we basically repeated the
tests for sequential performance described in the literature[7, 8] for NTFS. In such tests, several IO schemes
were tested with di�erent parameters and they were compared in order to �nd the best way to exploit our
IO potential IO bandwidth. The results of those tests are shown in Table 2, the numbers reported are the
median of 5 tests performed in 5 machines.

2http://www.3ware.com
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Kayak (MB/s) Netserver (MB/s)
Read Write Read Write

Bu�ered Synchronous 30 26 17 14
Bu�ered Overlapped 40 23 17 10
Bu�ered Thread 26 26 17 14
Unbu�ered Synchronous 20 10 17 17
Unbu�ered Overlapped 56 46 17 17
Unbu�ered Thread 60 50 18 18

Table 2: Performance of the NTFS IO schemes tested using the stripe set and the SCSI drive. The results
shown correspond to the best values when using the same chunk size as in the application. For the HPVM-
MinuteSort we used unbu�ered thread and a chunk size of 10 MB.

The results show that for the stripe set, there is a clear di�erence between Write and Read performance,
whereas for the SCSI drive there is almost no di�erence. In general, unbu�ered IO performs better, specially
when the chunk size is above the 64 KB chunk size the �le system cache uses to write back or from disk.
For the stripe set, increasing the chunk size improves performance steadily. Is hardly believable that many
applications besides the sorting application would be able to use such chunk size and consequently obtaining
the best performance.

2.2 Network Test

For the parallel implementation of the MinuteSort benchmark, communication performance is vital to obtain
good performance. In other words, it should be fast enough to prevent it from being the bottleneck. In our
particular case IO should never wait for network activity to complete, being IO the slowest component in
the chain, it is desirable to perform it without the faster components slowing it down.

The topology of the HPVM cluster at UCSD should be able to achieve 1.6 GB of bisection bandwidth,
which corresponds to the theoretical limit of the eight links of 160 MB/s each connecting both halfs of the
cluster. Therefore, we decided to measure how much of such bandwidth could be achieved, and designed a
point to point communication test using MPI unblocking receive calls, which o�ers the best communication
rate in MPI. The results of the �rst test when a Netserver or a Kayak is the receiver is shown in Figure 1,
it exposes a problem that had been previously noticed for the Kayak systems, the peak performance when
a Kayak is the receiver is about 30% slower than a Netserver, topping at only 70 MB/s.

To measure the achievable bisection bandwidth of the cluster we used the same point to point communi-
cation tests described above, but using the Kayaks as senders and Netservers as receiver, in order to stress
the network as much as possible and �nd the performance upperbound. The results are shown in Figure 2, it
is visible how adding machines to the computation does decrease the average performance perceived per node
in a consistent pattern, the e�ciency of the switched network reaches 80% of the advertised peak bandwidth.

In order to corroborate this behavior, we analyzed the routes generated by FM and the topology of the
cluster, corroborating that the routes where well balanced through the links in the absence of con
icts in
both sender and receiver side. Using the routing information we tested the switched behavior under the
presence of contention for an speci�c link, Figure 2 shows the performance drop as perceived for the sender
when the number of nodes contending for a single link increases, but the aggregate bandwidth corresponds
to 80% or about 128 MB/s of the advertised peak bandwidth regardless of the number of senders contending
for a link. Therefore, the achievable bisection bandwidth of the cluster using the existing topology was 1
GB.

3 Design

The design of MinuteSort application was based on the HPVM-Minutesort which sorted 10.3 GB in a minute.
The bucket sort it implements is a port of the NOWSort to HPVM with �xes and proper modi�cations to
�t the environment[8]. Since in this implementation IO takes up to 90% of the sorting time, it did not make
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Figure 1: Communication rate of Kayak and Netservers when they act as receivers. In the current imple-
mentation of FM it is the receiver that represents the bottleneck, the momory bandwidth of the Kayaks limit
the peak performance to 70 MB/s. When a Kayak send and a NetServer receive the performance reaches
100 MB/s.

sense to try to implement a new algorithm and we only improved the e�ciency of the algorigthm by taking
advantage of the two processors of the sorting nodes, by using two thread to sort the buckets. The plan was
to use the same bucket sort algorithm and concentrate on exploit the existing IO power in the best possible
way, which in this case means to do it as fast as possible.

Figure 3 shows the data 
ow of our design, which basically moves the data from the IO nodes to the
computing nodes, after the records are sorted, half of the data is sent back to the IO nodes and the other
half is written locally, in order to take advantage of some parallelism when writing. The IO nodes perform a
double bu�ering to hide the communication cost in both cases, when sending data and when receiving data.
The next subsections describe the measured performance in both IO and sorting nodes, that suggested the
design described here.

Given the data obtained from our tests described in Section 2, we generated the following performance
projections according to the application architecture explained in above. The goal of this model is to make
the best use of the memory of the cluster and to proof that the proposed model is the best possible it. The
total amount of memory in the cluster is 44 GB, but two thirds of it is in the NetServers, which happen
to have around a third of the IO power of the Kayaks. The �rst goal in mind is to take advantage of the
amount of memory present in the NetServers, which could happen

3.1 IO Nodes

Reading the input data from local disk in the sorting nodes (Netservers), 1 GB of data could be read in 51
seconds, using remotely the IO nodes (Kayaks), we could read the same amount of data at 21 seconds. In the
former case, a sorting node should read, send and receive at the same time, the IO rate is 20 MB/s, hence
communication should consume 40 MB/s for a total of 60 MB/s required of PCI bandwidth. In the latter
case, the IO node should only read and send and the sorting nodes should only receive, considering a 50
MB/s read rate, it would demand 100 MB/s of PCI bandwidth and 50 MB/s in the receiver side. In theory,
all these numbers should be achievable and considering that the benchmark on stake in the MinuteSort,
there should be enough time left to launch, sort, and write back to disk.

From the numbers above, that only reading from the IO nodes or a combination of remote-local reading
would do the job fast enough, needless to say it also makes it more interesting. Since remote reading
represents enough speed to populate all the memory of the sorting nodes we model the sort performance as
shown in Table 3, where a time-breakdown per stage using the performance numbers is shown. The time
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Figure 2: Results of the bisection bandwidth test showed that the communciation performance perceived by
the sender degrades as contention increases in the switches.

labeled as launch time takes into account the time to start to load the application to memory in every node,
plus the time for FM to synchronize the jobs.

Stage Time (sec)
Start up 7
Read + Dist 16.6
In-core Sort 5
Write 20

Table 3: This performance takes into account the numbers obtained from the IO tests and ignore the bisecton
bandwidth bottleneck, the memory consumed by the sorting algorithm and the limited PCI bandwidth. In
this ideal world, the total amount of data sorted per node is 1000 MB for a total of 31 GB.

The reading stage represents a partial sort, the input record are in random order and they are distributed
by range to the sorting nodes, since the data follows a uniform distribution, the amount of data sent to each
sorting node by each IO node will be roughly the same. A double bu�ering scheme is implemented to allow
the overlap of IO and communication, which means that the bisection bandwidth demand when the 32 IO
nodes are sending to the 32 sorting nodes is 1.56 GB.

3.2 Sorting Nodes

The sorting nodes implement the same bucket sort of the NOWSort [3, 4] with the appropriate modi�ca-
tions [8] for the HPVM-MinuteSort. The memory requirements of this implementation increase linearly with
the number of records sorted. This overhead comes from two sources, the use of unblocked receive operations
which require preallocated bu�ers, and the fact that the distribution of records is not uniform, which means
that the records bu�er and buckets need some free space to avoid over
ows.

Considering a 10% overhead factor for the record's bu�er, 30%, around 100 MB of temporal bu�ers for
unblocking receives and about 50 MB that the NT operating system takes away, we have around 700 MB of
memory to �ll up with records. The sorting nodes are capable of sorting 2 million keys/sec with the current
bucket sort algorithm, since 700 MB represents around 7.3 million records, the in-core sorting should not
take more than 4 seconds. Once the records are sorted, they are shipped back to an IO node in a one to one
communication, given that the records are already sorted.
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Figure 3: The graph represents the HPVM-MinuteSort design, the IO nodes send data to the sorting nodes
using a double bu�ering scheme, the sorting nodes implement a bucket sort, �nally they send write part of
the data to disk locally and send the rest to the IO nodes to be written back to disk.

4 Performance

We present the performance obtained with the implementation described above. Since this is a MinuteSort
benchmark, the metric is the amount of data sorted in a minute, but there are several interesting aspects
that we would like to discuss in this section, as the problems and bottlenecks that we faced and attacked on
the process.

4.1 Benchmark Performance

After implementation was complete, we proceeded to test the program using the whole cluster and obtained
some disappointing results shown in Figure 4. The performance shows a worse than expected performance
in the overlapped stages, where IO and communication takes place. Sorting time behaves as expected and
launching time at this point is considered irrelevant, we would like the performance to provide around 10
seconds for launching and synchronization time. The amount of data sorted was 18 GB, the time was under
a minute but excluding launching time.

As mentioned above, the peak bisection bandwidth is 25% smaller than the required one and if that
is not enough, the achievable one was measured smaller, setting the peak to less than 60% the required
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Figure 4: After initial testing, this is the time per stage of the application as the number of nodes is increased.
Perfomrance is particularly bad after 16 nodes, when more than two machines are sharing a network link.

amount of bisection bandwidth. However, we are hardly reaching this peak, and after some analysis and
experimentation we realized that most of the reason was poor communication scheduling. To schedule
communication the carterpillar algorithm is implemented, which would work better if the same nodes kept
synchronized all the time and no more than one IO node sends data to a sorting node at the same time.

4.2 Trouble Shooting

Since the data is only close to a uniform distribution, avoiding the problem mentioned above is really hard
without any extra help. One solution is the use of barriers before the IO nodes start sending data to a di�erent
sorting node, with the corresponding price in overhead for the use of barriers. Another way of reducing this
problem is an increase in the size of the bu�ers used in the double bu�ering algorithm. However, the memory
in the IO nodes is limited and such bu�ers cannot be make too big, for instance, a bu�er of 10 MB would
demand a total of 640 MB considering the size of the cluster.

Figure 5: After rewiring the cluster, this was the new topology designed to double the bisection bandwidth
by increasing the number of links.
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A third solution which would work in combination with any of the two described above relies on the
increase of the bisection bandwidth, which requires a recon�guration of the network topology. The topology
at this point o�ered only 8 di�erent links from the IO nodes to the sorting nodes. Therefore, we recon�gured
the cluster to double the bisection bandwidth by doubling the number of links. In the process we did not
add hardware, we sacri�ced some links in between the interclusters with care of not a�ecting the overall
performance of the cluster. The �nal topology of the cluster is shown in Figure 5.

Finally, we decided to use the sorting nodes local disk to write half of the record. Initially, we planned to
write only the last part of the data in order to speed up the writing of the records to disk, but the performance
obtained in the Kayaks was about the same bandwidth that could be obtained using the sorting nodes local
disk. Therefore, we decided to write half of the data locally and half of the data remotely, which basically
doubles the aggregate IO write bandwidth.

4.3 Final Performance

After rewiring the network, we decided to increase the size of the bu�ers as a second optimization, with the
hope to reduce contention enough to fully populate the memory of the sorting nodes and avoiding the cost
of using after each bu�er was emptied and the IO nodes switched to a di�erent target. This indeed increase
performance and we sorted 21.8 GB in one minute, breaking the previous Minutesort records of 10.3 GB.
The time breakdown without launching time is shown in Figure 6, where it is visible that the price paid for
reading and communication still has scaling problems when the number of nodes participating in the sort
increases. As expected sorting time and write time scale linearly with the number of nodes.
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Figure 6: Time per stage after optimizations, as the number of nodes is incrased, the amount of data sorted
this time was 21.8 GB with 64 nodes. The performance persist but was minimized enough to allow the
application to ran out of memory in the sorting nodes.

To launch the application we started using LSF which represents a lot of unnecessary overhead for this
benchmark. What is needed here is only a remote start up tool, hence we changed to Catapult [2], which
decreased the launch time dramatically but did not eliminate the high variance of the total launching time
due to the FM synchronization. After extensive testing of the launch time, it varied from 5 seconds to 17
seconds, with more consistent reading of 7 and 9 seconds. These readings suggest a sorting time of 52 seconds
or less in order to allow room for launch time.

5 Conclusions

We used the disk-to-disk MinuteSort to benchmark a heterogeneous HPVM cluster, which had two types
of systems di�ering in several con�guration aspects as IO, memory and CPU speed. For instance half of
the cluster can generate at a rate of 1.8 GB/s of aggregate bandwidth and the other half only 640 MB/s.
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This particularity allowed an interesting design for the MinuteSort benchmark by partitioning the cluster
in IO nodes and sorting nodes. Before writing down a design we measured the performance of each of the
components that could represent a bottleneck for the performance of this application, as it is the IO and
communication subsystems performance.

Initial testing using the new version of the HPVM version and the old HPVM-MinuteSort code used
to establish the MinuteSort record of 10.3 GB, we obtained a peak performance of 15 GB under a minute.
In order to improve performance we changed the design to take advantage of the heterogeneous resources
existing in the cluster, namely the vast memory of the sorting nodes and the huge IO capability of the IO
nodes. The new design showed some bottlenecks that would hardly show with the previous homogeneous
approach given the imbalance of resources of the new cluster.

Initial testing showed poor performance which after some analysis was attributed to the shortage of
bisection bandwidth and the lack of good communication scheduling. We decided to rewire the cluster being
careful to avoid any drop of performance in other part of the cluster. Also, in order to decrease the contention
at the receiver nodes for the �rst stage or the sort, we increased the size of bu�ers of the double bu�ering
scheme and allow the application to fully populate the memory of the sorting nodes.

After optimizations and tuning, the benchmark was run again and this time we sorted 21.8 GB in 49
seconds, plus 7 seconds of launching time for a total of 56 seconds. At this point we ran out of memory on
the sorting nodes. The application generates an aggregate bandwidth for the reading stage of 768 MB/s and
1.37 GB/s of aggregate bandwidth for the writing stage.
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