
TritonSort 2014

Michael Conley1, Amin Vahdat2,1, George Porter1
1UC San Diego, 2Google

{mconley,vahdat,gmporter}@cs.ucsd.edu
http://tritonsort.eng.ucsd.edu/

Abstract
We present TritonSort, a sorting system designed to max-
imize system resource utilization. We present the results
for: Indy GraySort, Daytona GraySort, Indy MinuteSort,
Indy CloudSort, and Daytona CloudSort.

1 Architecture

TritonSort runs a variant of the Themis MapReduce ar-
chitecture to perform the sort benchmark. We use iden-
tity functions for map() and reduce() to leave the
original data set unmodified. The shuffle phase inherent
to MapReduce causes the data records to end up on disk
in sorted order. For a detailed presentation of Themis
MapReduce, please consult [3].

1.1 Handling Arbitrary Record Sizes
Themis MapReduce uses a header attached to each
record that designates the record’s key and value lengths.
This header allows the system to correctly handle records
of any size, including variably sized records. In the case
of fixed sized records, this header is not materialized to
I/O devices, which prevents extra disk and network over-
head in our benchmark runs.

The actual sort algorithm used in the sort-and-reduce
phase of Themis is dynamically chosen based on proper-
ties of the data set, as well as memory constraints. For
fixed size records, we use a custom radix sort implemen-
tation when there is enough available system memory.
For records of arbitrary size, Themis falls back to quick
sort, and therefore satisfies the Daytona requirement of
handling variably sized records.

1.2 Handling Data Skew
Themis runs a sampling step before every job to create
a distribution model for the intermediate data. This dis-

tribution allows Themis to evenly partition map output
data even in the face of data skew. Typically a sample
rate between 0.1% and 1% is sufficient to create evenly
sized partitions from skewed data sets.

In order for this sampling step to be efficient, each
node computes partition boundaries from its local sam-
ple data. These partition boundaries are sent to a central
coordinator node, which picks the median boundary key
for each partition as the official partition boundary. This
mechanism trades accuracy for performance; the median
key may not yield the best partition sizes, but it circum-
vents the need to centralize the much larger set of sam-
pled data on the coordinator node. In practice we have
found this trade-off to be highly beneficial at scale.

Computing partition boundaries locally can be prob-
lematic if a data set’s skew cannot be determined from
the data on a single node. In this case, two nodes might
create very different distribution models of the data set
based on their locally sampled data. To combat this
case, locally sampled data is randomly shuffled to give all
nodes approximately the same view of the skewed data
set. This shuffle leverages the all-to-all capabilities of the
network and is therefore very efficient. In fact, the total
time taken by the sampling step was no more than 81
seconds in any of our Daytona entries, with a minimum
time of 34 seconds.

1.3 Handling Large Partitions

In the event that the sampling mechanism fails to cre-
ate evenly sized partitions, Themis can still operate cor-
rectly, even if the map output partitions are larger than
the size of memory. Any files that are larger than a
user-configurable size at the end of the map-and-shuffle
phase are marked as large partitions. Large partitions
do not flow through the normal sort-and-reduce phase in
Themis. Instead, a separate split-and-merge phase han-
dles these corner cases after the bulk of the data has been
completely processed.

Resource i2.8xlarge r3.4xlarge
Physical Processor Intel Xeon E5-2670 v2 Intel Xeon E5-2670 v2
vCPU cores 32 16
Memory 244 GiB 122 GiB
Networking 10 Gb/s 2 Gb/s
Local Storage 8x 800 GB SSD 1x 320 GB SSD
Network Storage - 8x 135 GiB EBS gp2

Table 1: EC2 configurations used

The split sub-phase of split-and-merge divides large
partitions into reasonably sized chunks of records which
can be sorted in memory before being written back to
disk. This sub-phase involves one sequential read of each
large partition, and one sequential write of each sorted
chunk. The merge sub-phase reads the heads of each
sorted chunk file into memory and merges them to cre-
ate a stream of sorted records for the large partition. This
stream of records is passed through the reduce() func-
tion before being written back to disk. The end result is
an output file, possibly larger than the size of memory,
that has been completely sorted and reduced. While this
requires twice as many I/O operations as the typical sort-
and-reduce phase, we rarely expect to use the split-and-
merge phase, so its overhead is negligible.

One caveat is that the reduce() function cannot re-
quire all of its records to fit in memory, but this is not
problematic for sort because the reduce() function
simply passes records through unmodified.

1.4 Data Replication

Themis supports the replication of input and output files
across nodes in the cluster. If replication is enabled, a
configurable number of copies of the reduce() output
data for each partition are sent to different nodes in the
cluster to be written to disk. In this way, the input and
output data sets are capable of surviving a single node
failure.

2 Environment

We run all benchmarks on Amazon’s Elastic Com-
pute Cloud (EC2) public cloud infrastructure [2]. For
GraySort and MinuteSort, we use the i2.8xlarge vir-
tual machine instance type described in Table 1. For
CloudSort, we use the r3.4xlarge instance type in
tandem with Amazon’s Elastic Block Storage (EBS) per-
sistent network-attached storage system [1].

We launch all instances in the same placement group
to improve the odds of getting full bisection network
bandwidth. Additionally, the r3.4xlarge instances

are launched in “EBS-optimized” mode to improve band-
width to the EBS storage service.

In general, servers and networking resources in the
public cloud are shared resources. The “Enhanced Net-
working” feature of these instances attempts to provide
some network isolation using a single placement group,
although the network itself is still a shared resource.

All virtual machines run the Linux operating system,
although versions vary depending on the benchmark.
Our Indy GraySort and Indy MinuteSort benchmarks run
Linux version 3.10.48 and a custom Amazon Machine
Image (AMI) based on ami-76817c1e, which is version
2014.03.2 of the HVM flavor of Amazon Linux. Daytona
GraySort and both CloudSort benchmarks run Linux ver-
sion 3.10.53 and a custom AMI based on ami-51736438,
which is version 2014.03.0 of the HVM Amazon Linux
distribution.

Each storage device, be it local SSD or EBS volume,
is configured with a single XFS partition. Each XFS
partition is mounted with the noatime, and discard
mount options.

All EBS volumes are 135 GiB General Purpose SSD
(gp2) volumes. We attach eight volumes to each VM
in the CloudSort benchmark to maximize throughput to
EBS. Input and output files are spread evenly across EBS
volumes with each file containing whole records, and we
read and write to files on different EBS volumes simul-
taneously.

Amazon automatically replicates EBS volumes across
availability zones, which provides data durability. EBS
volumes are designed for 5 nines of availability, which
makes them an ideal choice for persistent input and out-
put data storage.

In all the benchmarks that follow, scale was limited
only by the number of resources available on Amazon
EC2 and EBS.

3 Benchmarks

TritonSort 2014 uses the same cluster coordination
scripts used in TritonSort 2011 [4]. In all benchmarks,
we measure elapsed running time from the moment
that the central coordinator script instructs the nodes to

2

Benchmark # Nodes Time Rate Checksum
Indy GraySort 178 888 s 6.76 TB/min 746a51007040ea07ed
Daytona GraySort 186 1378 s 4.35 TB/min 746a51007040ea07ed
Daytona GraySort (Skewed) 186 1943 s 3.09 TB/min 746a50ec9293190d87

Table 2: 100TB GraySort results

Benchmark # Nodes Data Size Median Time Checksum
Indy MinuteSort 178 4094 GB 58.8 s 4c41ae646f1bb3bff

Table 3: MinuteSort results

launch Themis to the moment that the last node reports
to the central coordinator that its Themis binary has com-
pleted. This gives an elapsed time measurement external
from Themis itself, in compliance with the benchmark
rules.

For all benchmarks, we run the valsort application on
input and output data sets to verify that 1) the final output
is sorted, and 2) the input and output checksums match.

While we did experience failures while running on
Amazon EC2, they were infrequent enough where we
also experienced large stretches of time, on the order of
hours, with no failures, thus satisfying the Daytona re-
quirement of being able to run continuously for an hour
without failure. Because of this, we were able to use
the same set of virtual machines for the both the uniform
and skewed Daytona GraySort runs, as well as all 3 of
our CloudSort entries.

3.1 GraySort

The results of our 100TB GraySort benchmarks are
shown in Table 2. Our Indy benchmark sorts 100 TB
of data in 888 seconds for a total rate of 6.76 TB/min
on 178 i2.8xlarge virtual machines. Our Daytona
benchmark runs in 1378 seconds on 186 i2.8xlarge
instances for a total rate of 4.35 TB/min. In compliance
with benchmark rules, we also run a 100 TB skewed sort,
which completes in 1943 seconds, which is 41% slower
than our uniform sort time.

We disable sampling, large partition handling, and
replication in the Indy GraySort benchmark. This bench-
mark uses a predetermined partitioning function that as-
sumes a uniform data distribution. The Daytona variant
samples 0.4% of the data to construct partition bound-
aries. The large partition handling routine checks for
large partitions at the end of the sort-and-reduce phase.
Finally we enable twofold replication of input and output
data sets to survive single node failures.

We observed no duplicate keys in the uniform data set.
However, we observed 30285373571 duplicate keys in
the skewed data set.

3.2 MinuteSort

Our Indy MinuteSort results are summarized in Table 3.
We sort 4094 GB of data on 178 i2.8xlarge in-
stances. We perform 15 consecutive trials and report a
median elapsed time of 58.8 seconds, with a maximum
time of 59.8 seconds and a minimum time of 57.7 sec-
onds, for an average of 58.7 seconds.

Because MinuteSort uses a much smaller data set than
GraySort, we can keep data in memory during the shuffle
phase. In this case, we do not spill data to disk between
the two phases of Themis. Instead, shuffled map output
records are stored in memory on the reducer nodes until
the map-and-shuffle phase completes. At this time, in-
memory partitions are sorted and then reduced, before
being written to output disks.

As with Indy GraySort, we disable sampling, large
partition handling, and data replication in the Indy Min-
uteSort benchmark.

We observed no duplicate keys in the MinuteSort data
set.

3.3 CloudSort

Our results for both Indy and Daytona CloudSort are
summarized in Table 4. We sort 100 TB of data in three
consecutive trials with elapsed times 3093.92 seconds,
2913.92 seconds, and 2934.45 seconds, which yields our
benchmark submission average time of 2980.76 seconds.

We use 330 instances of the r3.4xlarge type,
which has an on-demand price of $1.400 per hour. How-
ever, we launch these instances in “EBS-optimized”
mode, which increases their hourly cost to $1.500. Thus
the dollar costs of the VMs alone comes to $425.41,
$400.66, and $403.49.

We attach eight 135 GiB gp2 EBS volumes to each in-
stance, yielding an overly conservative 382.7 TB of per-
sistent network attached storage. These volumes have a
price of $0.10 per GiB per month. We compute the pro-
rated cost using a 30-day month, which brings the EBS
costs to $42.54, $40.07, and $40.35. This gives total per-
sort costs of $467.95, $440.73, and $443.84. Thus we

3

Benchmark # Nodes Average Time Average Cost Checksum
Indy CloudSort 330 2980.76 s $450.84 746a51007040ea07ed
Daytona CloudSort 330 2980.76 s $450.84 746a51007040ea07ed
Daytona CloudSort (Skewed) 328 2944.34 s $442.63 746a50ec9293190d87

Table 4: 100TB CloudSort results

have an average total cost of $450.84.
Because we enter in the Daytona category, we en-

able sampling and large partition handling. All Cloud-
sort attempts sample 0.3% of the input data set. The
EBS persistent storage system allows our input and out-
put data sets to survive node failures without explicitly
replicating data at the application level. Therefore, we
do not employ any kind of application-level replication
or RAID for CloudSort. In compliance with Daytona
benchmark rules, we run the 100 TB skewed data set on
328 r3.4xlarge instances in 2944.34 seconds, which
yields a cost of $442.63, which is actually less than the
cost of sorting the uniform data set.

We observed no duplicate keys in any of the the uni-
form data sets. However, we observed 30285373571 du-
plicate keys in the skewed data set.

4 Acknowledgments

We would like to thank Alexander Rasmussen for his
significant contributions to the TritonSort and Themis
projects. Additionally we would like to thank Praveen
Gujar, Chad Schmutzer, Ann Merrihew, Amy Hogen-
hurt, and Jonathan Fritz at Amazon.com for provisioning
EC2 resources for our benchmark runs. We would also
like to thank Rahul Pathak, also from Amazon.com, for
both providing EC2 credits and helping us acquire cluster
resources. Finally we’d like to thank the sort benchmark
organizers, Mehul Shah, Chris Nyberg, and Naga Govin-
daraju. This project was sponsored in part by the Ama-
zon Educational Grant program, by the UCSD Center
for Networked Systems, and by grants from the National
Science Foundation (CNS-#116079 and CNS-0964395).
This project was supported by a donation from FusionIO.

References

[1] Amazon Elastic Block Store (Amazon EBS).
http://aws.amazon.com/ebs/.

[2] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2.

[3] Alexander Rasmussen, Michael Conley, Rishi
Kapoor, Vinh The Lam, George Porter, and Amin
Vahdat. Themis: An I/O-Efficient MapReduce. In

3rd ACM Symposium on Cloud Computing (SOCC),
October 2012.

[4] TritonSort 2011. http://sortbenchmark.
org/2011_06_tritonsort.pdf.

4

