
!1

Abstract—Following the GraySort rules of sortbenchmark.org,

this paper reports results of 100 TB in less than 100 sec (60.7 TB/
min) for the "Indy" GraySort, 44.8 TB/min for the "Daytona"
Graysort , 55.3 TB for the "Indy" MinuteSort, and 36.9 TB for
the "Daytona" Minutesort benchmarks using a cluster of 512
OpenPOWER servers optimized for hyperscale data centers.

Index Terms— sorting, distributed algorithms

I. INTRODUCTION

The introduction of high-bandwidth NVMe solid-state storage
devices, 100Gb Mellanox networking, combined with 160
hardware threads across two 10-core OpenPOWER (POW-
ER8) CPUs, has allowed for a substantial step forward in clus-
ter-level performance and an order of magnitude improvement
in per-node sort performance. Disproportionate growth in net-
work and storage bandwidth puts a new degree of pressure on
the CPU, and while sort alone still utilizes less than 10%/70%
(average/peak) of the CPU, managing the combination of sort,
network and storage now demands a high-performance CPU
to achieve maximum performance.
 The sort application consists of three major phases: 1) read-
ing from storage and partitioning the data into non-overlap-
ping ranges according to the sort keys, 2) distributing the
ranges to the destination nodes (shuffle), and 3) at the desti-
nation nodes combining equivalent ranges from all the nodes
into a sorted output file. In the case of the Daytona sort there
are a number of enhancements: 1) Input and output files are
duplicated across the cluster. 2) The application can handle
inputs larger than the combined memory in the cluster. 3) The
application can handle arbitrarily skewed input data sets. 4)
The application can handle a variety of key types and key and
record lengths.
 While tuned for the benchmark, the sort application is able
to handle a variety of key and record lengths and a variety of
sort orders. For all the results reported in this paper, the lexi-
cographic ordering was used, as per the benchmark guidance.
Tencent Sort supports a variable number of nodes. The appli-
cation supports the sorting of skewed datasets as well as
datasets that do not fit in the aggregate cluster memory. In
order to support a variety of networking protocols, including
those that do not guarantee delivery, network retry is handled
within the application in a modular fashion. Input and/or out-
put data can be recovered and the application restarted without
data loss in the case of node failure.

II. SYSTEM CONFIGURATION

The system used for these benchmarks is a 512-node Open-
POWER cluster with a 100GbE Mellanox data network. Node
attributes are summarized in Table 1 (hardware) and Table 2
(software).

Table 1: Node Hardware Configuration
(SuperMicro OpenPOWER SSP-6028UP-ENR4T)

Table 2: Node Software Configuration

Figure 1: Full-bandwidth leaf-spine 100GbE Network. 512
OpenPOWER servers(blue), 48 Mellanox Spectrum SN2700
switches(red), Mellanox 100Gb LinkX optical cables between
switches.  

 Tencent Sort

Jie Jiang*, Lixiong Zheng*, Junfeng Pu*, Xiong Cheng*, Chongqing Zhao*, Mark R Nutter**, Jeremy D Schaub**
*Tencent Corporation, China
**Technical Support

!2

Figure 2: Indy Sort Software Architecture. Parameters
shown are for the 100TB Indy GraySort benchmark.

III. INDY SORT

Indy sort consists of the following major phases shown in
Figure 2:

A.Input Generation (not shown in Figure 2)
B.Range Partitioning
C.Network Shuffle
D.Merge & Sort
E.Output Validation (not shown in Figure 2)

Stages B-D comprise the timed Indy GraySort and Minute-
Sort application. At the top level these stages are controlled by
the host node which issues commands to all other nodes and

collects their responses to determine successful completion of
the complete application. For the Indy sorts the range parti-
tioning is completed before the other stages start. The shuffle
and merge and sort phase are partially overlapped, with some
of the sort and merge tasks starting before the shuffle com-
pletes. In our benchmark runs four of the merge and sort tasks
typically operated concurrently.

A.Input Generation
Input data is generated on each node in the cluster prior to

running the benchmark, using gensort with appropriate data
offsets for each node. The input dataset (gensort output) for
each node is split to multiple segments that are stored on the
local xfs file system mounted on NVMe. To best balance
NVMe read bandwidth, CPU throughput, and main memory
size, a segment size of 19.54M records is selected.

For the 100TB GraySort benchmarks on a 512-node cluster,
each node has 100 19.54M-record segments (195.4GB), for
total of 51200 segments spread equally across the cluster (a bit
more than 100TB total). For the MinuteSort benchmarks the
number of segments is reduced and gensort offsets are adjust-
ed accordingly.

 Range Partitioning Shuffle Merge and Sort

!3

B.Range Partitioning
During the first stage, each node reads the input dataset and

partitions the data into a set of non-overlapping data ranges
which are written to a memory-based tmpfs file system. A flex-
ible partitioner is used that is a customized parallel (C/Open-
MP) version of radix sort optimized to leverage the large
number of threads and large caches of the POWER processor
architecture. Output data ranges can be fully or partially sort-
ed, depending on the number of radix sort iterations. For the
benchmark configurations this stage only partitions.

For the 100TB benchmark, the first stage creates 8K non-
overlapping ranges on each node (labeled “aaa” though
“mdb”), such that in the second stage each of 512 nodes can
concurrently process 16 such ranges (16x512=8K). In order to
leverage the available NVMe bandwidth, 4 concurrent copies
of the range partitioner are run on each node. Each node
achieves a sustained read bandwidth of about 10GB/s in this
stage (about 5TB/s in aggregate).

C.Network Shuffle
In the shuffle stage, the output files from the partitioner are

communicated to the destination nodes such that each node
collects an approximately equal number of ranges. In our
100TB run each range consists of 2K files (512 nodes x 4 par-
titioners) and if 512 nodes are available each node processes
16 such ranges (more if there are fewer nodes).

Successful file transfers are acknowledged and retry is han-
dled within the shuffle routine. While the current shuffle is
sockets-based, this approach allows for a variety of network
protocols, including those that do not guarantee delivery, as is
the case when ethernet packet retry is turned off.

So as not to overload the network, the number of simultane-
ous file transfers is controlled by a tuning parameter.

Maintaining a large number of network connections can lead
to excessive context switching To limit context switching, a
single thread in the shuffle handles multiple connections.

Mellanox ConnectX-4 100GbE NIC optimizations include
enabling Large Send Offload (LSO), Large Receive Offload
(LRO), and 64KB socket buffers to leverage LSO and LRO,
using large packets (MTU 9000), and managing interrupt
NUMA affinity. When the shuffle stage is run in isolation, per-
node sustained throughput is close to 10GB/s.

D.Merge And Sort
The final stage integrates data ranges from multiple input

sources and produces a final order across all keys within that
range using a second sort routine, which is a customized paral-
lel (C/OpenMP) version of a merge and sort optimized to best
leverage cache and thread attributes of the POWER processor.
As this operation has no dependencies across the ranges, mul-
tiple instances can operate in parallel, each producing their
own output files. For the 100TB benchmarks, sixteen merge
sorters per node are used, each producing one output file. Note
that because each POWER8 processor core supports 8 (SMT)
hardware threads, 160 threads are available to the application,

and each sorter uses multiple threads for input, sort, and out-
put processing. The output “odirect” flag is used, and an
“fsync” is performed before a node signals completion.

E.Output Validation
To validate the sort outputs, valsort is run (unmodified) first

on each local output directory in each node, and then globally
on the collected outputs of the local runs. The valsort output
(checksums and duplicate key counts) are recorded.

The settings indicated in the diagram were found to be opti-
mal for the 100TB GraySort, and were modified only modest-
ly for the other benchmarks.

IV. DAYTONA SORT

The Daytona sort has the same basic architecture as the
Indy sort, but with some modifications to most stages and with
two additional stages added:

A.Input Generation (not shown in Figure 2)
B.Range Partitioning
C.Skew check and repartitioning (added)
D.Network Shuffle
E.Merge & Sort
F.Output replication (2nd write added)
G.Output Validation (not shown in Figure 2)

Each stage is discussed below.

A.Input Generation
Input data is the same as that of of Indy sort, and every in-

put file is copied to a designated backup node to enable recov-
ery in the case of node failure.

B.Range Partitioning
Daytona sort requires handling input data sets that do not fit

in node memory. If the aggregate input size exceeds the size
that can be processed, the partitioning stage operates on a part
of the input data set that fits in memory and write the output
files for each set to (xfs) storage. For a 1 PetaByte sort, for
example, eight input file sets of 250GB per node could be pro-
cessed in sequence. For very large input sets the number of
ranges in the first stage must be increased to ensure a single
globally aggregated range fits in node memory in the sort and
merge stage. For the purposes of the reported benchmarks, the
output of the first stage is written to local tmpfs.

Also for Daytona the application must be able to handle a
variety of key and record sizes and must be able to support a
variety of sort orders. To achieve this while maintaining good
performance the (local) partitioner uses an internal data repre-
sentation consisting of a key and pointer to a data record in
memory. The partitioner (and similarly the stage 2 sort and
merge) reconstitutes the 100B records before they are output.

!4

C.Skew Check and Optional Data Repartitioning
At the end of the first stage, before the shuffle, the sizes of

each global range are conservatively approximated. If the size
of any global range exceeds the smallest range size by 2x or
more, then the data is re-partitioned. If re-partitioning is re-
quired then each of the partitioned input data sets (i.e. the out-
put of the range partitioner) is aggregated/divided into a rea-
sonable number of input files (in our 100TB runs 8 input files
of about 25GB for each multiple of about 200GB in the input)
and each of these new input files are sorted.

If the data was small enough to fit in memory then this
process does not require storage access. If the input data size
exceeds the available memory then the output of the range
partitioner resides in local storage and this stage must read and
write from local storage as well.

Depending on the number of desired non-overlapping ranges
(8K in our case), largest record keys are determined for four
times that number (32K in our example) of nearly equal-sized
ranges for each of the sorted files that are the input for this
stage of the repartitioner. These keys plus for each such key a
data field indicating their location (node, file, and range id) are
collected globally. For the 100TB sort with 200GB input data
sets and 8 sorted files per node, this results in 512(nodes) x
8(sorted files per node) x 32K(ranges) = 128M key/location
pairs. These key/location records are then sorted by key, main-
taining key ordering within each file, i.e. ensuring that keys
originating from the same sorted file do not go out of order. A
linear scan of the globally collected largest range keys while
maintaining a list of the last key/location pairs for each file is
performed, outputting this list for every n_th key in the global-
ly collected list. In our example n=16K and 8K such lists (of
4K key/location pairs each: one pair for each sorted file in
each node) are output. Identification of which range to split in
each file is required to ensure an even distribution even in the
case of keys that are repeated often. The results of this calcula-
tion are communicated back to all of the nodes, and within
each node each locally sorted file is divided into a new set of
ranges (8K in our example) based on the list of global split
keys and for each global split key the range (of the 32K) to
split. Note that the range to split is the one following the last
range that was fully included, indicated by the corresponding
last key for that file prior to the split key in the globally sorted
list. A binary search locates the first element within the range
to be split equal to or larger than the global split key. Note also
that because the same range may be split multiple times a new
range may be empty.

For datasets that do not exceed the size of the available
memory this stage also completes in memory .

 This procedure is guaranteed to result in global range par-
titions where each global partition is at least 3/4th the size of
the average partition and at most 5/4th the average size.

D.Network Shuffle
 In the case where the input data does not fit into main

memory, the network shuffle reads from xfs, and merge and
sort are alternated, but is otherwise identical to Indy sort.

E.Merge And Sort
 The merge and sort stage writes its output to tmpfs instead

of xfs, but is otherwise the same as for the Indy sort.

F.Output Replication
For Daytona output is written both to local xfs and to the

designated backup node from which data can be recovered in
the case of node failure. The local copy is written by “dd” us-
ing “oflag=direct”, the output replica is written by the shuffle
server using OS cached write. A background periodic sync and
drop cache mitigates the cost of the final synchronization.

G.Output Validation
Output Validation for Daytona is the same as for Indy, but

with the added requirement that Daytona sort needs to be able
to run continuously for an hour without system failure. This
capability is documented in Table 7 with 30 successive runs of
more than 2 minutes each..

V. BENCHMARK RESULTS

Table 3: Benchmark Results

For each of the reported results, time was measured (using
the linux time command) on the host node that initiates the
computation. Care was taken to ensure no results of prior runs
remain in the caches, and that outputs were fully written to
secondary storage before the data nodes indicate their comple-
tion to the host.

Table 4: Approximate timing of the individual Stages. * indi-
cates overlapping stages.

Table 4 summarizes the typical time spent in each of the
stages of the computation. Note that for the Indy sorts the
network shuffle and merge and sort stages partially overlap.
This lengthens the shuffle and sort and merge stages some-
what. Also note that, as one would expect, even after redistrib-
ution node-to-node variability in runtime is larger for the

!5

skewed datasets. CPU utilization is typically less than 10% for
stages other than sort and merge, where it ranges from 20-30%
but peaks at about 70% when sort and networking are over-
lapped.

A summary of all the runtimes of all the consecutive itera-
tions for each benchmark is attached in Tables 5-10.

Acknowledgement

The authors thank Chris Nyberg for his extensive feedback
resulting in many improvements to the presentation.  

!6

Table 5: Successive Indy GraySort attempts

512 Node, 100.0448 TB Indy GraySort (98.845 sec, 60.7283 TB/min)

!7

Table 6: Successive Indy MinuteSort attempts

512 Node, 55.296 TB Indy MinuteSort (59.910 sec median , 55.296 TB/min)

!8

Table 7: Successive Daytona GraySort attempts

512 Node, 100.0448TB Daytona GraySort
(median 134.100 sec, 44.7628 TB/min)

!9

Table 8: Daytona Graysort skewed dataset

512 Node, 100.0448TB Daytona GraySort Skewed
(median 257.960 sec, 23.2698 TB/min)

!10

Table 9: Successive Daytona MinuteSort attempts

512 Node, Daytona Minutesort
(median 57.14 sec, 36.864 TB/min)

!11

Table 10: Daytona MinuteSort skewed datasets

512 Node, Daytona Minutesort Skewed Dataset
(median 108.590 sec, 20.369 TB)

