
MendSort: Sorting 1 TB using less than 60K Joules
Igor Mendelev, Levi Mendelev, YonathanMendelev

mendsort@gmail.com
December 2023

1. Introduction
We describe a custom-built system that runs the JouleSort 1 TB benchmark (Daytona and Indy
categories) using modern desktop-class hardware with 8 NVMe Gen4 SSDs and a 12-core 65WAMD
Ryzen 7900 CPU. It is able to perform a 1 TB sort with an average sort time of 304.4 seconds using an
average of 195W.This equates to a total average energy use of 59,259 joules, which
corresponds to 168,750 sorted records per joule.This result is 2.33x more energy e�cient than the
RezSort (2021 Daytona) record [1], and 1.06x more energy e�cient than the ELSAR (2022 Indy)
record [2]. The sorting speed for our system is 4.53x faster than the RezSort record, and is 2.03x faster
than the ELSAR record. Our system is also signi�cantly less expensive than the previous
record-holders: 21.6% cheaper than the system used for RezSort and 26.6% cheaper than the system
used for ELSAR.

2. Hardware

Type Model Qty. Total
Cost

Motherboard Gigabyte X670E AORUS PROX 1 $320

CPU AMDRyzen 9 7900 (65WTDP) 1 $370

RAM G.Skill Trident Z5 RGB 96 GB (2 x 48 GB) DDR5-6400 CL32 1 $290

SSD WD SN850X 2 TB 5 $540

SSD WD SN850X 1 TB 3 $225

PCIe card ASUSHyper M.2 x16 Gen5 1 $85

Power supply Corsair RM750x SHIFT 750W 80+ Gold (with active PFC) 1 $110

CPU cooler Thermalright Phantom Spirit 120 SE 1 $35

Case Corsair 4000D Air�ow ATXMid Tower 1 $80

System cost $2,055

1

Note: Photo of the system was taken with the glass side panel removed, but all tests were conducted with the
panel installed. TheWatts Up Pro power meter is located on top of the case, near the top right corner of the
image.

Storage
The system has 8 SN850XNVMe SSDs. Of the 4 NVMeM.2 slots on the motherboard, 2 slots are
directly connected to the CPU (1 x 2 TB and 1 x 1 TB SSD), and another 2 slots are connected
through the X670E chipset (1 x 2 TB and 1 x 1 TB SSD). We also utilize all 4 NVMeM.2 slots on the
ASUSHyper M.2 Gen5 card (3 x 2 TB and 1 x 1 TB SSD). The ASUSHyper M.2 card is connected to
the primary PCIe Gen5 x16 slot on the motherboard. We enabled x4x4x4x4 bifurcation for the x16
slot in the BIOS, allowing all 8 SN850X SSDs to be used simultaneously at Gen4 speed. The NVMe
speeds were veri�ed using the lspci -vv command (LnkSta values).

2

Memory
The RAM is run at 5200MT/s, which is the default for the Ryzen 7900.

Cooling
The system has four total fans: three 120mm fans and one small fan built into the PCIe card. One of
the 120mm fans was installed inside the Thermalright CPU cooler, and the other two were attached
inside the front panel of the case (see image above). All the fans were running throughout the sort. The
ambient temperature was ~68° F.

Additional hardware details can be found at the PCPartPicker link [3].

3. Software
Operating System
The system was running Rocky Linux 9.3 OS [4] with kernel version 5.14.0-362.8.1.el9_3.x86_64,
with the Balanced power pro�le (pre-de�ned in Rocky Linux 9.3).

Sorting
We used a trial version of Nsort 3.4.61 [5], specifying radix sort for the in-memory sorting. We ran
Nsort with the following parameters:
-processes=24
-memory=72000M
-method=radix
-format=size:100
-field=name:key,size:10,off:0,character
-key=key
-statistics
-in_file=/data2/src/joule10B.txt,direct,transfer_size=64M
-out_file=/data2/dest/joule10Bnt.txt,direct,transfer_size=128M
-temp=/data1/tmp,direct,transfer_size=128M

We used the gensort utility to generate both regular and skewed unsorted 1 TB text �les. Sorted �les
were validated using the valsort utility after each run.

Storage Con�guration
The SSDs are divided into two separate storage volumes. One volume (data1) consists of 3 x 1 TB
NVMe drives, and a 1 TB partition of a 2 TB drive. The other volume (data2) consists of 4 x 2 TB
drives. For data1, we utilized an XFS �lesystem on top of a striped LVM volume. For data2, we utilized
an XFS �lesystem on top of the RAID0 software array using themdadm utility. The input �le to be

3

sorted and the sorted output �le were stored on the data2 volume. Temporary �les created during
Nsort runs were stored on the data1 volume. Optimal transfer_size values for this system and
workload were determined empirically. We used the fstrim utility before each sort run to achieve
optimal performance.

4. Measurement
Power meter
We used theWatts Up Pro power meter [6] to gather power usage data. Our desktop computer was
connected to power through theWatts Up Pro AC outlet. TheWatts Up Pro was connected to anM2
MacBook Air using the USB-A cable included with theWatts Up Pro and a USB-A to USB-C adapter.
Using the open source wattsup.py Python utility [7], power usage data for each run was logged to a
CSV �le in 1 second intervals. We used the CSV �les to calculate the energy usage for each sort run.
The results were con�rmed using the integratedWatts Up Pro display, which was set to show aggregate
energy usage from the start of each sort run with 3-digit precision (0.1 Wh).

Timing
Both the system andMacBook Air were running ntpd, and the time discrepancy with time.gov
throughout the runs was always 30 milliseconds or less, which is negligible compared to the length of
the runs (~304 seconds). Each run was started and ended with the date command e.g.
date; time nsort -processes=24 ... ; date

Nsort itself was always run pre�xed with time (i.e. time nsort…) to show the number of milliseconds
and CPU usage stats for that run. The start and end of the time intervals, used to compute average
power for each run, were based on the output of the two date commands for that run. The runtime for
each run (from the output of time nsort…) was rounded up to the nearest tenth of a second, then
multiplied by the average power, which was computed from that run’s captured power meter logs. We
discarded the fractional �rst and last seconds’ power measurements for each run to ensure we didn’t
underestimate the average power; the resulting increase in the computed average power was negligible
(<0.1%) for all runs.

4

http://time.gov

5. Results
A typical 1 TB sort run used ~59 KJ (16.5 Wh), and took around 5 minutes 4 seconds for a regular
(non-skewed) data �le. The sorting time on the skewed data (generated using gensort -a -c -s) was 6
minutes 20 seconds, 1.22x slower than our regular (non-skewed data) performance, and used ~72 KJ
(20Wh).

Run # Time (s) Power (W) Energy (J)

Run 1 304.9 194.7 59,364

Run 2 304.6 194.6 59,275

Run 3 304.5 194.5 59,225

Run 4 304.4 194.7 59,267

Run 5 303.7 194.8 59,161

Mean 304.4 194.7 59,259

SD 0.45 0.12 74

Skewed 380 189.6 72,048

Runtimes (as reported by the time command) are rounded up to the nearest tenth of a second.
The following is the statistics output generated by Nsort during Run 5:
Nsort version 3.4.61 (Linux-X64) using 27G of memory out of 70G
Pointer sort (radix) performed Sun Dec 31 13:17:29 2023

Input Phase Output Phase Overall
Elapsed 181.54 122.06 303.60
I/O Busy 41.32 0% 55.21 46% 96.53
Action User Sys Busy User Sys Busy User Sys Busy
sort 3520 61.74 1973% 2754 52.80 2300% 6275 114 2105%
Rssmax Majflt Minflt Sort Procs Aio Procs/QueueSize RegionKB

113641.91M 0/12 17825 24 0/12 512
File Name ModeCntTran Busy Wait MB/sec Xfers Bytes Records
Input Reads
/data2/src/joule10B.txt dir 4x64m 23% 1.05 5590 14902 1000000000000 10000000000

Temporary Writes
/data1/tmp dir 10x128m 25% 0.00 5563 7630 1000002207744

Temporary Reads
/data1/tmp dir 10x128m 34% 0.00 8267 7630 1000002207744

Output Writes
/data2/dest/joule10Bnt.txt dir 4x128m 46% 0.69 8262 7451 1000000000000 10000000000

5

Based on the Nsort statistics output, the input phase of the sort (reading the input �le, sorting runs of
records, and writing those runs to the temporary �les) took 182 seconds (60% of the total time), and
the output phase (reading the runs from the temporary �les, merging them, and writing the result to
the output �le) took 122 seconds (40% of the total time). Our system was CPU-bound with an average
CPU usage of 88% (2105% out of a maximum 2400%). During the input phase, the average CPU usage
was 82% (1973% out of 2400%), and both the disk read and write speeds were ~5.6 GB/s. During the
output phase, the average CPU usage was 96% (2300% out of 2400%), and both the disk read and write
speeds were ~8.3 GB/s.

We observed, both on theWatts Up Pro’s built-in display during the test runs, and in the captured logs,
power factor values in the 0.98-1.00 range, consistent with the power supply speci�cations (active PFC
0.989 @ 115 V).

We didn't observe any signi�cant average power usage variations between the sort run phases in the logs
(especially on non-skewed data), most likely because all of the CPU cores and NVMe disks were near
their maximum power usage.

6. References
1. Reda, W., & Kostic, D. (2022, February 24).RezSort: Sorting 1TB using Energy-efficient

NVMe SSDs. Sort Benchmark. Retrieved December 26, 2023, from
http://sortbenchmark.org/RezSort2021.pdf

2. Kristo, A., Pillai, P., & Kraska, T. (n.d.).Designing an energy-efficient, learning-enhanced
algorithm to sort 1TB of ASCII data. Sort Benchmark. Retrieved December 26, 2023, from
http://sortbenchmark.org/ELSAR2022.pdf

3. Mendelev, L. (2023, October 30). System Parts List. PCPartPicker. Retrieved December 26,
2023, from https://pcpartpicker.com/list/jL4Myg

4. Rocky Enterprise Software Foundation. (n.d.). Rocky Linux. Retrieved December 26, 2023,
from https://rockylinux.org/

5. Ordinal Technology Corp. (n.d.). Ordinal Technology - Nsort Home Page. Retrieved
December 26, 2023, from http://www.ordinal.com/

6. Watts Up Pro. (n.d.). Vernier. Retrieved December 26, 2023, from
https://www.vernier.com/�les/manuals/wu-pro.pdf

7. Lui, P. (2023, January 2). wattsup.py. GitHub. Retrieved December 26, 2023, from
https://github.com/paklui/wattsup

6

http://sortbenchmark.org/RezSort2021.pdf
http://sortbenchmark.org/ELSAR2022.pdf
https://pcpartpicker.com/list/jL4Myg
https://rockylinux.org/
http://www.ordinal.com/
https://www.vernier.com/files/manuals/wu-pro.pdf
https://github.com/paklui/wattsup

