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Abstract 

KioxiaSort is a fast and low-power sorting optimized under the requirements of 2019 Joule sort (1010 

records, Indy) benchmark. KioxiaSort can sort 1TB of data in 9 min using 89K Joules – which means 112K 

records sorted/joule. 

 

1. Introduction 

This paper shows algorithm, implementation and evaluation results of our sorting named KioxiaSort. 

KioxiaSort deals with Joule sort benchmark (1010 records, Indy). Figure 1 shows the previous scores of Joule 

Sort winners. The latest winner of Joule Sort was NTOSort [1], which sorts 1TB of data by consuming 168K 

Joules of energy using 16 Serial-ATA SSDs. With the help of the recent NVMeTM SSDs, our KioxiaSort 

consumes only 89K Joules to sort 1TB. Thus, in comparison with the latest winners, KioxiaSort achieves 

better score.  

 

Figure 1: Yearly trends (2007- 2019) of the Joule Sort Benchmark (1010 records) 

 

The remaining of this document are sections to give more details about how we designed, tested and 

evaluated this project. In Section 2, we describe our algorithm. Section 3 presents the hardware components 

and configurations. Section 4 describes the software components (OS, compiler and so on). Section 5 describes 

the evaluation procedure, and Section 6 shows the evaluation results. 
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2. Algorithm 

KioxiaSort is based on the classical external merge sort. Please refer to the basics of external merge sort in 

“The Art of Computer Programming” [2] and Wikipedia [3], [4]. 

 

KioxiaSort algorithm consists of two main phases: 

 Run* phase (Chunked sort) 

 Input data is read from disks and divided into “chunks”. The size of each chunk is determined 

according to available RAM. Each chunk is sorted separately, and then written back into disks. More 

details about Run phase are shown in Section 2.1. 

 Merge phase 

 The chunks (from Run phase) are read from disks, merged into final sorted data, and then written 

back into disks. More details about Merge phase are shown in Section 2.2. 

 

2.1. Run Phase 

 

Figure 2: Sorting pipeline 

 

In the Run Phase, chunks are sorted in multi-threaded fashion (Each chunk is sorted by the corresponding 

thread). In order to utilize CPU resources maximally, thread executions are handled in a pipelined manner 

using mutual exclusions. Figure 2 shows an example of thread-pipeline for 4-core 12-thread execution (We 

use 8-core 24-thread in our final evaluation). In the figure, R denotes reading chunks from SSDs, S denotes 

sorting chunks, while W denotes writing sorted chunks into SSDs. Reading- and writing-steps do not consume 

                                                   
* In this context, run means chunk, not execute [2]. 
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much CPU resources since they utilize DMA (with O_DIRECT†), and reading, writing and sorting are 

executed in parallel. In the sorting step, we also apply the techniques used in the past contests as below. 

 

 DEMSort [5]: Indices are used instead of actual values in the sorting step. Also, radix sort is done for the 

first 2-byte of keys (The remaining bytes of keys are sorted by quicksort). 

 OZsort [6]: The key data are arranged in little-endian for fast key comparison. 

 

In our evaluation, chunk size is 800MiB. Dividing 1TB data set by 800MiB, the last chunk has valid entries 

less than 800MiB. In the last chunk, the valid entries are sorted, and the remaining space up to 800MiB is 

filled by dummy entries for the merge phase. As a result of Run phase, 1193 chunk files (each size 800MiB) 

are created. 

 

2.2. Merge Phase 

 

Figure 3: 2-stage Tournament Tree 

 

In the Merge Phase, we use merge sort based on Tournament Tree [2], [4]. Figure 3 demonstrates the merge 

                                                   
† For interested readers, the number of IO system calls is explained in Appendix A. 
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phase. It shows an example of merging 16 sorted chunks. In this figure, the input at the bottom represents 

the sorted chunks, while the output at the top represents the minimum key and the corresponding value. 2-

stage merging is adopted to utilize multi-core CPU resources. Chunk IDs are used internally instead of actual 

values. The chunk IDs are finally converted into the original values. The conversion can be easily 

implemented since output values are accessed sequentially within each chunk. The execution of the merge 

phase is stopped when the valid 1TB data set is output. The dummy entries are not output since their keys 

are treated as bigger than any valid keys. 

In our final evaluation, we use 6 threads for Thread C. Thus, thread B perform 6-way merge, while 1193 

chunks are distributed on 6 threads as follows. 

 Thread B : 6-way merge 

 Thread C1-C5 : 199-way merge 

 Thread C6 : 198-way merge 

 

3. Hardware 

 

Category  # note 

Motherboard ASUS Prime Z370-A 1  

CPU Intel Core i9-9900K 1  

Memory Crucial 16GB DDR4-2666(CT16G4DFD8266) 4 Total: 64GB 

Storage Toshiba XG5-P KXG50PNV2T04 (2TB) 1 OS installed 

 CFD CSSD-M2B1TPG3VNF (1TB) 8  

 Highpoint SSD7101A-1 1  

 ASUS Hyper M.2 x16 1  

Power source KUROUTOSHIKOU KRPW-TI500W/94+ 1  

Case Fan Fractal Design Silent Series 120mm 2  

CPU cooler SCYTHE Kotetsu Mark II 1  

Power meter Hioki PW3335 1  

Table 1: Hardware List 

 

We set up hardware components listed in Table 1. All of them are commercially available in the public market. 

In order to measure power consumption, Power meter Hioki PW3335 [7] is used. The power meter is 

compatible with the SPECpower® benchmark. The accuracy of PW3335 is within ±0.1% and it can 

synchronize through LAN, thus it satisfies the requirements for Joule Sort.  



 

 

 

Figure 4: Block diagram of storage components 

 

 

Figure 5: Intel Z370 Chipset Block Diagram [8] 

 

Figure 4 shows block diagram of storage components. 8 NVMeTM SSDs are used. Intel Z370 chipset is 

configurable for PCIe lanes in three ways as shown in Figure 5. We choose 1x8 and 2x4 lanes outlined by the 

red box. This configuration is selected via BIOS as shown in Appendix D. 

 

4. Software 

 

OS Ubuntu 19.04 Server Config: Appendix C 

Kernel Linux 5.0.0-25-generic  

Compiler gcc 9.1 -Ofast -march=native 

RAID LVM 2.02.176 Chunk size 512KB 

Config: Appendix B 

File system Ext4  

Table 2: Software List 

 

Table 2 shows the software components for our evaluation. Ubuntu 19.04 Server and some necessary 

packages are installed. As of August 2019, the latest versions of the packages are used. OS configurations 
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are in default, except for the number of openable files, which is increased as explained in Appendix C. 

 

 

Figure 6: Volume configurations 

 

Figure 6 shows volume configurations for storing sorting data (refer to section 7.2 for the reasons for this 

configuration). 5 volumes are prepared. One of them (4TB volume) uses LVM and RAID0 as explained in 

Appendix B. 

 

5. Evaluation procedure 

Joule Sort (1010 records, Indy) benchmark is evaluated as follows. 

 

A. Prepare 1TB data set by using gensort. 

B. Start power meter for logging. 

C. Execute KioxiaSort. 

 Execution time is measured during states from Figure 7 to Figure 9. 

 Input file is removed at the end of Run phase as shown in Figure 8 (refer to section 7.3 for the reason). 

The removal is permitted in Indy sort. 

D. Validate sorted data by using valsort. 

 

Steps from A to D are repeated 5 times. 

 

 

Figure 7: Initial State 
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Figure 8: Run phase end state 

 

 

Figure 9: Final State 

 

The power is measured as shown in Figure 10. The power supply cable of the sorting machine is plugged into 

the power meter. The consumed power of the sorting machine is measured by the power meter and logged to 

the monitoring PC via LAN at 0.2 second interval. The internal clock is synchronized between the sorting 

machine and the monitoring PC by NTP. The consumed power from start time to end time of KioxiaSort 

execution is reported as results in Section 6. 

 

 

Figure 10: Power measurement environment 

 

6. Results 

The execution results of 5 times are shown in the following tables. 
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 Time(s) Power(W) Energy(J) Srec/J Valsort Dup keys 

Run 1 530.92 167.91 89,147 112,175 CRC: 12a06cd06eeb64b16 0 

Run 2 523.67 169.52 88,774 112,645 CRC: 12a06cd06eeb64b16 0 

Run 3 522.06 169.13 88,294 113,258 CRC: 12a06cd06eeb64b16 0 

Run 4 523.52 170.01 89,004 112,355 CRC: 12a06cd06eeb64b16 0 

Run 5 523.92 168.96 88,521 112,967 CRC: 12a06cd06eeb64b16 0 

Avg 524.82 169.11 88,748 112,680   

stdev 3.48 0.782 347 395   

Table 3: Execution results 

 

Table 4 shows the performance of the individual phases. “Time” and “CPU utilization” was measured by 

/bin/time command. Please note that “Avg. Power” is average of 180 sec for each phase (Figure 11), whereas 

“Power” in Table 3 is average of entire execution. Thus, “Avg. Power” and “Energy” in Table 4 are not the 

same as Table 3. 

  Avg. Power (W) Time (sec) Energy (KJ) CPU utilization (%) 

  Run Merge Run Merge Run Merge Run Merge 

Run1 173.5  169.3  277.5  240.1  48.1  40.6  848% 575% 

Run2 173.6  169.5  278.1  240.1  48.3  40.7  863% 571% 

Run3 173.7  166.4  277.2  240.1  48.1  39.9  857% 574% 

Run4 173.7  165.7  278.9  240.1  48.4  39.8  856% 575% 

Run5 171.4  169.1  277.7  241.5  47.6  40.8  854% 575% 

Avg. 173.2  168.0  277.9  240.4  48.1  40.4  856% 574% 

Table 4: Performance breakdown of individual phases 

 

 

Figure 11: Power vs time (actual measurement result of Run 4) 
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7. Discussion 

 

7.1. Single-thread merge vs. Multi-thread merge 

As explained in Section 2.2, multi-threaded merge is employed. We have not done apple-to-apple comparison 

between single- and multi-threaded merge implementation. However, we estimated that the Joule score of 

multi-threaded implementation is 34% or more better than single-threaded one. 

 

Table 5 shows our estimation. We've measured a single-threaded implementation (A) that uses blocking I/O, 

and multi-threaded implementation (C). We assume time and power of a single-threaded implementation (B) 

that uses non-blocking I/O as follows: 

 the execution time of (B) is the same as user-time of (A)  

 the power of (B) is more than that of (A) 

As a consequence, we estimated that multi-threaded implementation (C) is 34% more efficient. 

 

In our case, storage IO is not the bottleneck, thanks to 4 NVMe SSDs (i.e. more than 5.0 GB/s in total). As 

for IO among the threads, we've reduced the number of synchronization down to once per 1M-entry in order 

to improve performance. 

 

 Time Power Joule note 

(A) Single thread merge (measured) 1146 sec 80.6 W 92.4 KJ Blocking I/O 

(B) Single thread merge (estimated) 665 sec > 80.6 W > 53.6 KJ Non-blocking I/O 

(C) 8 threads merge (measured) 240 sec 168.0 W 40.0 KJ  

Table 5: Performance comparison between single- and multi-thread merge 

 

7.2.  NVMe configuration 

In Ssection 4, NVMe1-2-5-6 is selected for the RAID volume. This is because of the following reasons: 

 

In case of the run phase, if we chose NVMe1-2-3-4 (Figure 12), the red arrow could be the bottleneck. The 

maximum bandwidth of RAID volume is limited by PCIe x8, and the peak performance of NVMe 1-2-3-4 could 

be limited. 



 

 

  

Figure 12: Data flow with RAID volume NVMe1-2-3-4 

 

Figure 13 shows data flow of our configuration, in which the data is read from NVMe1-2-5-6 and written to 

NVMe3-4-7-8. In this case, the read performance from NVMe1-2-5-6 is not limited. Thanks to PCIe full-

duplex transmission, the write performance to NVMe 3-4 is not limited as well. 

  

Figure 13: Data flow with RAID volume NVMe 1-2-5-6 

 

 

7.3. Removal of the input file 

In section 5, the input file is removed at the end of the Run phase. This is because of the following reasons: 

 

In order to achieve better score in Joule sort, it is important for us to use up the performance of SSDs. In 

general, cleaning SSD's internal state is often beneficial for the performance. Thus, we deleted all files in the 

SSD. Also we used "fstrim" command to make sure the internal state be cleared. We performed some 

experiments both with/without the removal‡, and the performance with the removal was better. Please note 

that the time of the removal is included in the total execution time. 

                                                   
‡ We've compared "fio" write with "rm" and without "rm" (i.e. overwrite). 

Intel Core i9-
9900k

x8 Highpoint
SSD7101A-1

(PLX PEX 8747)

x4
NVMe1(CFD)

x4

x4
NVMe3(CFD)

x4
NVMe4(CFD)

x4
NVMe5(CFD)

x4
NVMe6(CFD)

Intel 
Z370

Chipset

x4
NVMe7(CFD)

x4
NVMe8(CFD)

NVMe2(CFD)

Intel Core i9-
9900k

x8 Highpoint
SSD7101A-1

(PLX PEX 8747)

x4
NVMe1(CFD)

x4

x4
NVMe3(CFD)

x4
NVMe4(CFD)

x4
NVMe5(CFD)

x4
NVMe6(CFD)

Intel 
Z370

Chipset

x4
NVMe7(CFD)

x4
NVMe8(CFD)

NVMe2(CFD)



 

 

 

Acknowledgements 

 

The authors would like to thank all the people related to the internship program and the collaboration with 

Princess Sumaya University for Technology for generous supports and helpful discussions. 

 

We are grateful to Kazuhiro Hiwada-san who offered continuing support and constant encouragement. 

 

We would like to thank the Sort Benchmark committee members for their insightful comments. 

 

References 

 

[1]  A. Ebert, “NTOSort,” sortbenchmark.org, 2013. 

[2]  D. E. Knuth, The Art of Computer Programming: Volume 3: Sorting and Searching.  

[3]  "Wikipedia: External sorting," [Online]. Available: https://en.wikipedia.org/wiki/External_sorting. 

[4]  "Wikipedia: k-way merge algorithm," [Online]. Available: https://en.wikipedia.org/wiki/K-

way_merge_algorithm. 

[5]  M. Rahn, "DEMSort — Distributed External Memory Sort," 2009. 

[6]  R. Sinha, "OzSort: Sorting 100GB for less than 87kJoules," 2009. 

[7]  "POWER METER PW335," Hioki, [Online]. Available: 

https://www.hioki.com/en/products/detail/?product_key=5598. 

[8]  Intel, "Intel (r) Z370 Chipset Product Brief," [Online]. Available: 

https://www.intel.co.jp/content/dam/www/public/us/en/documents/product-briefs/z370-chipset-product-

brief.pdf. 

 

 

Trademarks 

 NVMe is a trademark of NVM Express, Inc. 

 PCIe is a registered trademark of PCI-SIG. 

 Intel and Intel logo are trademarks of Intel Corporation in the U.S and/or other countries. 

 ASUS and ASUS logo are trademarks of ASUSTeK Computer Inc. 

 Crucial and Crucial logo are trademarks of Micron Technology Inc. 

 SPECpower is trademarks of Standard Performance Evaluation Corporation. 

All other company names, product names and service names may be trademarks of their respective 

companies. 

 

Appendix A: The number of IO system calls 

 

To mitigate system call overheads, we use relatively large IO size as follows. 



 

 

 

In the Run Phase, both read and write system call carry 800MiB data except for the last read. For 1TB input 

file, reading by 800MiB is performed 1192 times (999,922,073,600 B in total), and the remaining 76,100 KiB 

(77,926,400B) is also read. 1193 temporary chunk files are created. The size of each chunk file is 800MiB. 

The total number of bytes for temporary files is 1,000,760,934,400 B. 

 

In the Merge Phase, read system call is performed up to 152704 times§ by 6.25 MiB (6,553,600 B), while 

write system call is performed 19073 times by 50 MiB (52,428,800 B), and one more write for the remaining 

25,497,600B. The size of the output file is 1TB (1,000,000,000,000 B). 

 

   IO size #num total 

Run Phase Read Aligned 800 MiB 1192 999,922,073,600 B 

Unaligned 76,100 KiB 1 77,926,400 B 

Write  800 MiB 1193 1,000,760,934,400 B 

Merge Phase Read  6.25 MiB Max 152704 Max 1,000,760,934,400 B 

Write Aligned 50 MiB 19703 999,974,502,400 B 

Unaligned 24,900 KiB 1 25,497,600 B 

Table 6: Summary of IOs. 

 

Appendix B: RAID configurations 

 

# pvcreate /dev/nvmeAn1 /dev/nvmeBn1 /dev/nvmeCn1 /dev/nvmeDn1 

# vgcreate vg0 /dev/nvmeAn1 /dev/nvmeBn1 /dev/nvmeCn1 /dev/nvmeDn1 

# lvcreate vg0 -l 95%VG -i4 -I 512K 

# mkfs.ext4 /dev/mapper/vg0-lvol0 

 

Appendix C: ulimit configuration 

 

$ cat /etc/security/limits.conf 

*                soft    nofile          65536 

*                hard    nofile          65536 

$ ulimit –n 

65536 

 

 

 

 

 

                                                   
§ The actual number of read is less than 152704 because the merge phase stops before all of dummy entries 

are read. 



 

 

Appendix D: BIOS configuration 

 

Hyper M.2X16 Enabled 
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