
1

FuxiSort

Jiamang Wang, Yongjun Wu, Hua Cai, Zhipeng Tang, Zhiqiang Lv,
Bin Lu, Yangyu Tao, Chao Li, Jingren Zhou, Hong Tang

Alibaba Group Inc

{jiamang.wang, yongjun.wyj, hua.caihua, zhipeng.tzp, zhiqiang.lv,

bin.lub, yangyu.taoyy, li.chao, jingren.zhou, hongtang}@alibaba-inc.com

Overview

Apsara is a large-scale general-purpose distributed computing system developed at Alibaba Cloud

Computing Inc (also called Aliyun). It is responsible for managing cluster resources within a

datacenter, as well as scheduling parallel execution for a wide range of distributed online and offline

applications. It is the common foundation of a majority of public cloud services offered by Aliyun,

and supports all data processing workload within Alibaba as well. Some key components of the

Apsara system include: (a) a distributed file system, called Pangu; (b) a distributed computation

framework, called Fuxi, for cluster resource management and job scheduling; and (c) a parallel

DAG-based data computation framework on top of Fuxi to process large datasets. Apsara is mostly

written in C/C++ to achieve high performance and efficiency. More details about Apsara can be

found in [1].

Apsara has been deployed on hundreds of thousands of physical servers across tens of data centers

at Aliyun, with the largest clusters consisting of more than 5000 servers each. Any DAG-based

distributed data processing can be implemented as a Fuxi job, including simple Map/Reduce jobs

and more sophisticated machine learning jobs. Source inputs and outputs, along with intermediate

data are placed in Pangu, with a variety of replication and locality configurations to achieve the

optimal balance between performance and reliability in order to accommodate varying requirements

from different applications.

In this paper, we introduce FuxiSort, a distributed sort implementation on top of Apsara, and

present our Daytona GraySort and MinuteSort results with details in technical implementation,

performance improvements, and efficiency analysis. FuxiSort is able to complete the 100TB

Daytona GraySort benchmark in 377 seconds on random non-skewed dataset and 510 seconds on

skewed dataset, and Indy GraySort benchmark in 329 seconds. For the Daytona MinuteSort

benchmark, FuxiSort sorts 7.7 TB in 58 seconds on random non-skewed dataset and 79 seconds on

skewed dataset. For the Indy MinuteSort benchmark, FuxiSort sorts 11 TB in 59 seconds.

System Configuration

Before describing the overall architecture and detailed implementation, we present our system

configuration as follows.

1. Hardware

We run FuxiSort in a relatively homogeneous cluster with a total of 3377 machines, classified

into 2 groups.

2

 3134 machines

 2 * Intel(R) Xeon(R) E5-2630@2.30GHz (6 cores per CPU)

 96GB memory

 12 * 2TB SATA hard drives

 10Gb/s Ethernet, 3:1 subscription ratio

 243 machines

 2 * Intel(R) Xeon(R) E5-2650v2@2.60GHz (8 cores per CPU)

 128GB memory

 12 * 2TB SATA hard drives

 10Gb/s Ethernet, 3:1 subscription ratio

2. Software

 OS: Red Hat Enterprise Linux Server release 5.7

 Apsara distributed computing system

 FuxiSort implemented on top of the Apsara

 Occasional background workloads (the cluster is shared with multiple groups, and we

choose relatively idle periods of the cluster to conduct our experiments).

FuxiSort Overview

In this section, we present an overview of the FuxiSort design on top of the Apsara system. The

same implementation is used to perform both GraySort and MinuteSort, with various system

optimizations outlined in the next section.

Input

partition

1

Merge

sort

Merge

sort

Input

partition

2

Input

partition

3

Map task

 1

Map task

 2

Map task

 3

Sort task

1

Sort task

2

Output

file 1

Output

file 2

Memory

Memory

Memory

Memory

Memory

Sort

network

Sort

Sort

Sort

Sort

Dump

file1

Dump

file2

Figure 1. An Overview of FuxiSort

We first perform a sampling of the input to determine the range partition boundaries and divide

the rest of the sorting process into two phases, map and sort, as shown in Figure 1. Each phase is

carried out with multiple parallel tasks.

During the map phase, each input data segment is read from local disks (via Pangu Chunkserver

daemon) and range partitioned by a map task. Each partitioned result of a map task is then

transferred via network to the corresponding sort task.

During the sort phase, each sort task repeatedly collects records from the map tasks, and keeps

3

them in memory. It periodically performs an in-memory sort when its buffer becomes full,

followed by writing the sorted data into temporary files (also stored on Pangu without replication).

After all records are collected, it combines all the previously sorted data both in memory and

temporary files using a merge sort and outputs the final result in Pangu. FuxiSort finishes with a

number of range-partitioned and internally-sorted data files as the final result by the time all sort

tasks finish.

Implementation and Optimizations

In this Section, we describe the implementation details of FuxiSort and explain several key

performance optimizations, including data generation, sampling, I/O optimization, pipelined and

overlapped execution, and network communications. Finally, we present additional improvements

for the MinuteSort benchmark.

1. Input data generation

We prepare the input datasets in either random or skewed distribution using gensort, and copy

them to Pangu. Each input dataset is split to multiple segments. The number of segments matches

the number of map tasks so that each task processes one data segment. In addition, each input dataset

is two-way replicated by Pangu. That is, every segment has two copies. Each copy of a segment

consists of a number of Pangu chunks distributed evenly across all the disks on one machine. Each

Pangu chunk is stored as a local file system file by Pangu plus associated metadata (Pangu manages

individual disks directly to maximize parallel IO bandwidth instead of bundling them via RAID).

All segments for a dataset are uniformly distributed among all machines in a balanced fashion. We

use 20000 segments for the 100TB dataset in GraySort and 3400 segments for the datasets in

MinuteSort. As described below, the output data are also two-way replicated in a similar way.

2. Input sampling

In order to discover data distribution and reduce data skew in the sort phase, we sample the input

of Daytona Sort to generate the range partition boundaries so that each partition consists of a

relatively equal amount of data to process.

Given that the input data is split into X segments, we randomly select Y locations on each segment,

and read from each location Z continuous records. In this way, we collect X * Y * Z sample records

in total. We then sort these samples and calculate the range boundaries by dividing them into S range

partitions evenly, in which S represents the number of sort tasks.

For the 100TB Daytona GraySort benchmark, with 20,000 data segments, we select 300 random

locations on each segment, and read one record on each location. As a result, we collect 6,000,000

samples, sort, and divide them into 20000 ranges, same as the number of sort tasks. The calculated

range boundaries are used by each map task to partition records in the map phase. The entire

sampling phase takes approximately 35 seconds. For the Daytona MinuteSort benchmark, with 3350

data segments, we select 900 random locations on each segment, and read one record on each

location. A total number of 3,015,000 samples are collected, sorted, and then divided to 10050

ranges. The entire sampling phase takes about 4 seconds. The sampling step is skipped for Indy sort

benchmarks.

3. I/O dual buffering

We employ the standard dual buffering technique for I/O operations on each Pangu file.

javascript:void(0);

4

Specifically, FuxiSort processes data in one I/O buffer while instructing Pangu to carry out I/O

operations with the other buffer. The roles of the two buffers switch periodically in order to

guarantee both I/O and data processing to be done in parallel, thereby significantly reducing the task

latency.

50 100 150 200 250 300 350 400 450 600500 550 650

(1)

s

stage

(6)

(5)

(4)

(3)

(2)

(7)

(8)

Figure 2. FuxiSort Latency Breakdown

4. Overlapped execution

As shown in Figure 2, to further reduce the overall latency, we break each phase into several

small steps and overlap the execution of all the steps as much as possible during the process. These

steps are listed below.

(1) Data sampling

(2) Job startup

(3) Map task reads input

(4) Map task sends data to sort task

(5) Sort task receives data

(6) Sort task sorts in-memory data and dumps to temporary files if necessary

(7) Sort task combines in-memory data and temporary files by merge sort

(8) Sort task writes final output

We parallelize the execution of data sampling and job startup, the latter of which dispatches all

the task processes, and performs other bookkeeping chores such as collecting the network addresses

of all the sort tasks, and informing the responding map tasks. When step (1) finishes, the sampling

program stores the partition boundaries into Pangu and generates another flag file for notification.

Once dispatched, all the map tasks wait for the notification by periodically checking the existence

of the flag file. Once the partition boundaries become available, the map tasks immediately read

them and perform partitioning accordingly.

Naturally, steps (3) (4) and (5) are pipelined during the map phase, and steps (7) and (8) pipelined

5

during the sort phase. In step (6), had the sorting and dumping been deferred until the entire memory

assigned to a task is filled up, step (5) would have been blocked because the memory is still fully

occupied during sorting and no memory is left for receiving new data. To mitigate this problem, we

parallelize (5) and (6) by starting the sorting once a certain amount of memory is occupied, so that

(6) is brought forward and (5) is not blocked. We start the merge and dump of sorted in-memory

data to temporary files when memory is fully occupied. Obviously the lower the memory limit to

start sorting, the earlier step (6) would start. In our experiments, as a tradeoff between concurrency

and merge sort efficiency, we start (6) when approximately 1/10 of memory assigned to a task is

occupied by the received data. As a result, we are able to parallelize I/O and computation without

noticeable delay, at the expense of more temporary files to be merged later, without introducing

significant overhead in our cases.

Figure 2 shows the elapsed time for each step and their overlapped execution.

5. Handling network communication

There is significant network communication traffic between map tasks and sort tasks. Each

network packet arrival raises an interrupt to CPUs to process. If the interrupt handling is set to be

affinitive to a specific CPU core, then the interrupt handling may be delayed when the same CPU is

busy with sorting, resulting in request time-out and, even worse, packet loss. By balancing the load

of network interrupts among all CPU cores via setting the “smp_affinity” system option, the rates

of timeout events and packet loss are significantly decreased.

Figure 3. Real-time mode architecture

6. Additional improvements for MinuteSort

As the elapsed time of MinuteSort is required to be limited up to 60 seconds, the scheduling

overhead of ordinary batch data processing becomes non-negligible. To mitigate the overhead, we

run MinueSort in Fuxi’s Real-time Job mode. The Real-time Job mode is developed to achieve high

performance with low scheduling latency and in-memory computation. Figure 3 illustrates the

architecture of Real-time Job mode. In a typical production environment, the system is setup as part

of the cluster deployment process, and runs as a long-living service by creating a pool of persistent

worker processes on each machine. Users can later submit a variety of jobs to the scheduler of the

system and be informed the status of job execution. To comply with the requirements of sort

benchmark competition, where all setup and shutdown activities directly related to sorting must be

included in the reported time, we modified our client program to start the worker process pool before

we submit the MinuteSort job, and stop the workers after job completion, and we include the time

for starting/stopping the worker pool in the reported elapsed times.

The target scenario of Real-time Job mode is latency-sensitive data processing with medium-

6

sized dataset (no more than 10TB), since all records are likely to be cached in main memory,

including both input and output data. In our experiments, we only use Real-time Job mode for

MinuteSort benchmark.

Benchmark Results

We present our FuxiSort results for both 100TB GraySort and MinuteSort benchmarks below.

Apsara has been deployed in our production environment for over six years, with non-interruptive

progressive upgrade to avoid impacting jobs or online services during the process. FuxiSort is in

fact a lightweight specialization of our general-purpose DAG-based data computation framework,

and most of the aforementioned optimizations are inside Apsara and the DAG-based data

computation. Many of our production jobs using the same framework process much larger datasets

than 100TB, and it is fairly common for a job to run multiple hours (Fuxi and Pangu has built-in

mechanisms to recover from a variety of hardware/software failures).

For all benchmark runs described below, input/output/temporary data are uncompressed. We

ensure data are not buffered in OS page cache by running a data purge job that randomly reads from

local file system before each benchmark run. Pangu ensures data durability by flushing data to disk

when an output file stream is closed.

1. GraySort

Table 1 shows the performance of FuxiSort in different GraySort benchmarks. Daytona sort

includes sampling on start while Indy sort does not. For Daytona, the final output data are stored

with a replication factor of two, same as the input data. Pangu ensures that the two copies are

replicated to different machines (and racks). For Indy, the final output data are stored with only one

copy. Overall, FuxiSort is able to perform Indy GraySort against the randomly distributed input

dataset in 329 seconds, Daytona GraySort against the randomly distributed input dataset in 377

seconds, and Daytona GraySort against the skewed input dataset in 510 seconds. They are

equivalent to a sorting throughput of 18.2 TB, 15.9 TB and 11.7 TB per minute, respectively.

Table 1. GraySort benchmark results

2. MinuteSort

We also run FuxiSort using Real-time Job mode for the MinuteSort benchmark. With 15 trials,

the median time of sorting 7.7 TB is 58 seconds for uniformly-distributed data, and 79 seconds for

Indy GraySort

Random

Daytona GraySort

Random

Daytona GraySort

Skewed

Input Size (bytes) 100,000,000,000,000 100,000,000,000,000 100,000,000,000,000

Input File Copy 2 2 2

Output File Copy 1 2 2

Time (sec) 329 377 510

Effective Throughput

(TB/min)
18.2 15.9 11.7

Number of Nodes 3377 3377 3377

Checksum 746a51007040ea07ed 746a51007040ea07ed 746a50ec9293190d87

Duplicate Keys 0 0 30285373571

7

the Daytona category with skewed data distribution. For the Indy category, FuxiSort is able to sort

11 TB randomly distributed input dataset in 59 seconds. The experiment details are shown in table

2. Similar to GraySort, all input and output datasets are written in 2 copies, stored in two different

machines.

Table 2. Daytona MinuteSort benchmark results

Acknowledgements

We would like to thank the members of the Fuxi team for their contributions to the Fuxi distributed

computation framework, on top of which FuxiSort is developed and implemented. We would also

like to thank the entire Apsara team at Aliyun for their support and collaboration.

Reference

[1] Zhang, Z., Li, C., Tao, Y., Yang, R., Tang, H., & Xu, J. (2014). Fuxi: a fault-tolerant resource

management and job scheduling system at internet scale. In Proceedings of the VLDB

Endowment, 2014, 7(13), 1393-1404.

 Indy MinuteSort

Random

Daytona MinuteSort

Random

Daytona MinuteSort

Skewed

Input Size 11 TB 7.7 TB 7.7 TB

Records 109951164050 76965814500 76965814500

Trial 1 58 59 85

Trial 2 59 61 81

Trial 3 59 61 78

Trial 4 61 60 80

Trial 5 60 61 80

Trial 6 60 62 81

Trial 7 60 57 79

Trial 8 61 57 77

Trial 9 59 58 78

Trial 10 59 57 77

Trial 11 61 60 79

Trial 12 58 58 79

Trial 13 59 58 80

Trial 14 59 57 79

Trial 15 58 58 80

Median Time(sec) 59 58 79

Nodes 3377 3377 3377

Checksum ccccb43e2a7b4183c 8f5c15cd7fc7a47b2 8f5c2f6f4068d6876

Duplicate Keys 0 0 265727609

