
SORT BENCHMARK 2014 1

DeepSort: Scalable Sorting with High Efficiency
Zheng Li† and Juhan Lee‡

Abstract—We designed a distributed sorting engine optimized
for scalability and efficiency. In this report, we present the
results for the following sort benchmarks: 1) Indy Gray Sort and
Daytona Gray Sort; 2) Indy Minute Sort and Daytona Minute
Sort. The submitted benchmark results are highlighted in Table I.

I. INTRODUCTION

DeepSort is a scalable and efficiency-optimized distributed
sorting engine. It performs out-of-place external sorting sup-
porting general key-value record types. We engineered the
software design for high performance based on two major
design decisions:

• Parallelism at all sorting phases and components is max-
imized through properly exposing program concurrency
to thousands of user-level light-weight threads. As a
result, computation, communication, and storage tasks
could be highly overlapped with low switching overhead.
For instance, since hard drives are optimal for sequential
access, the concurrency of storage access is limited while
computation and communication threads are overlapped
to take advantage of remaining resources. We use the Go
programming language to orchestrate the massive parallel
light-weight threads, i.e. Go routines. Individual sorting
functions are implemented in C for high performance.

• Data movements in both hard drives and memories are
minimized through an optimized data flow design that
maximizes memory and cache usage. Specifically, we
avoid using disks for data buffering as much as possible.
For data buffered in memory, we separate key data that
needs frequent manipulation from payload data that is
mostly static. In this way, performance could be improved
through minimal data movements for payloads and proper
caching on the frequently accessed keys.

We deployed DeepSort on a commodity cluster with ap-
proximately 400 nodes. Each node has two 2.1GHz Intel Xeon
hexa-core processors with 64GB memory, eight 7200rpm hard
drives, and one 10Gbps Ethernet port. These servers are
connected in a fat-tree network with 1.28:1 top-of-rack (TOR)
to spine subscription ratio. We equipped these servers with
CentOS 6.4 and ext4 file systems. We carefully measured
the performance of DeepSort on this platform based on Sort
Benchmark FAQ [1] for both Gray Sort and Minute Sort. Our
results show that the system can sort 3.7 TB of data within
a minute based on Daytona Minute Sort rules. All submitted
benchmark results are listed in Table I.

Contact: zheng.l@samsung.com
† Research Engineer, Cloud Research Lab, Samsung Research America

Silicon Valley, San Jose, CA U.S.
‡ Vice President, Intelligence Solution Team, Samsung Software R&D

Center, Korea

In this rest of the report, we explain the software design of
DeepSort in Section II. The underlying hardware and operating
system platforms are described in Section III, followed by the
detailed experiment measurements in Section IV.

II. DESIGN OF DEEPSORT

The design of DeepSort targets high efficiency at a large
scale. To reach this goal, we designed a fluent data flow
that shares the limited memory space and minimizes data
movement. DeepSort expresses data processing concurrency
through light weight threading and optimize parallelism at all
stages and components of the program. This section explains
the implementation of our design philosophy and specific
design choices in the distributed external sorting program.

A. Design Overview

The overall design is depicted in Figure 1 from the per-
spective of records to be sorted. A record is first fetched
from the source disk to the memory, sorted and distributed
to the destination node, merged with other records based on
order, and finally written to the destination disk. For cases
like Gray Sort, in which the amount of the data is larger
than the aggregated capacity of memory, multiple rounds
of intermediate sorts are executed. The final round merges
spilled intermediate data from previous rounds. The input of
the unsorted records is distributed evenly across nodes, and
the output is also distributed based on key partitions. The
concatenated output files are formed into a globally sorted list.
RAID-6 erasure coding across nodes is used for replication in
Daytona sort 1. The data read procedure includes detecting
possible failures and recovering data from erasure decoding.
The data write procedure is followed by sending data to other
nodes for erasure encoding.

Each process phase in Figure 1 is described below from
source disks to destination disks. A table of notations is
presented in Table II for ease of understanding. We leverage
both data parallelism and task parallelism to exploit the con-
currency in the distributed sorting. There is only one process
per node with thousands of light weight threads to handle
different functionalities concurrently. To illustrate the abundant
parallelism, we count the number of light weight threads as in
Table III. The light weight threading library, i.e. Go runtime,
multiplexes them onto OS threads for high performance. Mem-
ory is shared among these threads to minimize IO operations
and thus optimize the overall performance. As we maximize
the memory usage by sharing the same address space, only
pointers are passed between different phases except across
nodes or rounds.

1Based on email communications with the SortBenchmark committee, such
replication complies with the competition rules.

SORT BENCHMARK 2014 2

TABLE I
SUMMARY OF RESULTS

Category Variant Data Size # of Nodes Time (seconds) Quantity of Interest

Gray Sort Indy 109.728 TB 381 1650 3.99 TB/min
Gray Sort Daytona 101.376 TB 384 2050 2.97 TB/min
Minute Sort Indy 5249.6 GB 386 59.859 5249.6 GB
Minute Sort Daytona 3686.4 GB 384 57.675 3686.4 GB

Read
Decode Sort Node

Pivot
Send/
Recv Merge Write

temp
Read

Decode Sort Send/
Recv Merge Write

temp
Read

Decode Sort Send/
Recv Merge Write

final
Read
temp

Disk
Pivot

Initial Round Intermediate rounds Last round

Erasure
code

Fig. 1. Pipeline stages of the DeepSort design.

TABLE II
SUMMARY OF NOTATION

Notation Typical Value1 Comments

N 400 Number of nodes in the cluster
R 10 Number of rounds
D 8 Number of disks per node
m 160 Merging threshold at destination nodes
B 10 Number of total batches per round
s 3 Oversample ratio in partition 2

Bnode 2 Batches per node needed for node splitter 2

Bdisk 4 Batches per node needed for disk splitter
1 Illustrative number for 100 TB sort across 400 machines in Section III.
2 For skewed data set, we increase S and Bnode for load balancing.

A record is first fetched from a source disk by a reader
thread. One reader thread is assigned to each hard drive to
guarantee the sequential access of disks. Data is fetched from
disk consecutively and then divided evenly over the course
of R rounds, where each round handles B batches of data.
For Daytona sort, batch is also the erasure coding granularity,
i.e. size of coding block. Once a batch of data is filled, a
sorting thread is created. Once a round of data is fetched,
reader threads are paused to wait for local write threads and
synchronize with all other remote nodes. There are D reader
threads per node and they are persistent through the whole
program. If one node is missing or corrupted, other nodes will
split its tasks and fetch data from peers for erasure decoding.
Any missing data will be recovered.

Each sorting thread is started after a batch of data is fetched
from one disk. The sorting thread leverages GNU C library for
general sorting of any record and key types. After local sorting,
the data are split based on their corresponding destination. At
a master node, the partition is conducted in parallel with the
first round of local sorting across all nodes. This partition will
be explained in Section II-B. The sorting thread concludes
after sender threads of all destinations are notified. There are
D × B sorting threads each round per node. They start and
conclude at different time based on the performance of disk
and network access. They are also overlapped with disk and
network threads of later and previous batches, respectively.

The communication threads are separated into senders and

TABLE III
NUMBER OF LIGHTWEIGHT THREADS PER NODE

Type Number Persistence Typical Value

Read D Yes 8
Sort D ×B ×R No 800
Send N − 1 Yes 399
Receive N − 1 Yes 399
Pre-merge N ×D ×B ×R/m No 2000
Merge D ×R No 80
Write D Yes 8
Partition 1 No 1
Memory Manage 1 Yes 1

Total O(DBR+N) approx 3.6k

receivers. On each node, there are N − 1 sender threads and
N − 1 receiver threads to build an all-to-all virtual crossbar
for data transfer. These 2N − 2 communication threads are
persistent through the whole program. Sorting threads notify
sender threads once data is ready, and receivers notify mergers
when data arrives. The details of the communication will be
explained in Section II-D.

While short sorted lists are being collected by the receivers,
the lists are merged as they arrive. For each node in each
round, there are N×D×B lists from all the peers to be merged
before writing to disks. To maximize performance, there are
two levels of merging threads. The first level merging threads,
i.e. premergers, start after enough lists (> m) have been
received. The second level threads merge the last arrived m
lists with the resulting lists from the premerger threads. For the
non-last rounds in multi-round sorting, e.g. GraySort, it is not
necessary to wait until all lists arrive before the second level
merging begins. To increase overlap between communication
and disk access, the second level merging threads start shortly
after disk read processes have concluded locally for this round,
and the lists received after that will be postponed to merge in
the next round. In the extreme skewed case, memory becomes
full before all the N ×D×B lists are received. The memory
management thread (Section II-E) also notifies the second level
merging threads to start so that data can be spilled and memory
space can be released. Like local sorting functions, merging

SORT BENCHMARK 2014 3

functions are also based on open source libraries for general
key and value sizes.

Similar to reader threads, there are D writer threads, each
of which corresponds to one hard drive. Each of the writer
thread is accompanied by one second level merge thread that
corresponds to its key space. Therefore, the writing starts
shortly after the data has been received. In case the data
does not fit into the aggregated memory, multiple rounds are
used. The write phase at the first R − 1 rounds spill the
results into sorted temporary files. Typically, writer threads
generate one file per round per disk. In extremely skewed
cases where the memory management thread notifies early
second level merging, multiple files are generated per round
per disk. The write phase at the last round merges temporary
files generated at all rounds with the final data received to form
the output sorted list. If replication is required as in Daytona
sort, the write phase will be followed by erasure encoding
detailed in Section II-F. Typically, one final output file with
optional codec information is generated on each disk. The
writing of output files is overlapped with erasure encoding
and corresponding communication. For Indy Minute Sort, two
output files with separate key partition spaces are generated
per disk so that the writing of the first partition could be
overlapped with the communication of the second partition.

B. Partition of the key space

In parallel with the data path described above, we perform
partitioning of the key space and thereby compute the splitters,
which are the keys that determine the boundaries among
nodes and disks, so that the output could be almost uniformly
distributed among all the disks. By evenly sampling data
across all nodes as late as possible with small performance
interference, we can cover a large portion of the data set. We
use the following algorithms to create a set of splitter keys
targeting even output partitions.

There are two levels of partitions: the first level node parti-
tioning determines the key splitters among nodes in the cluster,
i.e. node splitters, while the second level disk partitioning
determines the key splitters among disks within a node, i.e.
disk splitters. Both levels are variances of sample splitting [2].
Unlike in-memory sorting, where splitters can be gradually
refined and data can be redistributed, rebalancing in external
sorting generally comes with high IO overhead. Therefore,
histogram splitting is not used.

The N − 1 node splitters that partition key ranges among
nodes are determined in a centralized master node. Each node
is eligible to be a master node, but in case redundancy is
neeeded, a master node could be picked by a distributed leader-
election algorithm. From all the nodes, after Bnode batches of
data are sorted, N − 1 node splitter proposals are picked to
evenly partition the batch of data into N segments. These node
splitter proposals are aggregated to the master node. A total
of N ×D ×Bnode × (N − 1) proposals are then sorted in the
master node, and the final node splitters are determined by
equally dividing these proposals. Considering there might be
data skew, we over-sample the data s times by locally picking
N × s node splitter proposals that evenly partition the data

Algorithm 1 Partition among nodes: Proposals
Require: N , s, D, Bnode

1: procedure PROPOSAL(l) . A thread at each node
2: count = 0
3: while list← l do . Pointer of sorted lists
4: len = length(list)
5: for i = 0...N × s− 1 do
6: pos = len× i/(N × s− 1)
7: Send list[pos].Key
8: end for
9: count = count+ 1

10: if count >= D ×Bnode then
11: break . Sample threshold reached
12: end if
13: end while
14: Receive splitters . Final splitters from the master
15: end procedure

Algorithm 2 Partition among nodes: Decision
Require: N , s, D, Bnode

1: procedure DECISION . One thread in master
2: list = []
3: for i = 1...N2 ×D ×Bnode × s do
4: Receive key
5: list = append(list, key)
6: end for
7: Sort(list) . Sort all keys received
8: for i = 1..N − 1 do
9: pos = i ∗ length(list)/(N − 1)

10: Broadcast list[pos]
11: end for
12: end procedure

into N × s segments. The final N − 1 node splitters are thus
picked from a sorted listed of N×D×Bnode×N×s proposals.
This process is carried in parallel with data read and sort,
but before the first round of sending data to its destinations
to minimize network overhead. We describe the node splitter
design in Algorithm 1 and Algorithm 2.

The D − 1 disk splitters per node are determined distribu-
tively at each destination node. After receiving data that equals
the size of Bdisk input batches from all peers, the destination
node starts a separate thread that calculate the disk splitters in
parallel with receiver threads and merger threads. When the
disk splitter threads start, there are about Bdisk×N ×D sorted
lists. For the i-th disk splitter, every sorted list proposes a
candidate. This candidate will be used to divide all the other
lists. The one that best approaches the expectation of i-th
splitter is picked as the final disk splitters. Unlike the node
splitter algorithm, the disk splitter algorithm is not on the
critical path of the program and is thus executed in parallel
with the first level merging.

Compared to existing external sort designs (Hadoop [3]
and TritonSort [4]), we sample and partition the key space
in parallel with reading and sorting. We also delay the disk
partition as late as possible but before second level merging.

SORT BENCHMARK 2014 4

TABLE IV
EXTERNAL SORT SAMPLE COMPARISON

System Time of Sample Coverage rate Location

Hadoop [3] Before sorting 1/106 at most 10 nodes
TritonSort [4] Before sorting approx 1/1923 All nodes
DeepSort During sorting 1/50 All nodes

As shown in Table IV, DeepSort achieves higher sampling
coverage across all computing nodes in participation. As will
be shown, DeepSort handles skewed data much better than
existing designs.

The cost of high sample rates only reveals in Daytona
Minute Sort. For Indy Sort, we set Bnode to 1 and s to 1
to minimize the time impact of partition. The partition takes
less than 2 seconds to complete at the master node. In order
to account for skewed data set, we set Bnode to 8 and s to
25 for Daytona Gray Sort. The node partition process takes
approximately 30 seconds to complete at the master node. This
delay has minimal impact of overall long sorting time but
resulting in a reasonably balanced output. We set Bnode to 5
and s to 20 for Daytona Minute Sort. The node partition takes
approximately more than 10 seconds to complete. This delay
has a major impact within a minute. The resulting Daytona
Minute Sort data size is only about 70% of the Indy Minute
Sort. Unlike node partitioning, disk partitioning is not in the
execution critical paths and does not cause extra run time.

C. Sort and Merge

Unlike the rest of system, the individual sorting and merging
functions are implemented based on open source C libraries,
and we keep it general to any key and value sizes and types.
Comparison sort has been a well-studied topic. Instead of
examining the theoretical limits to pick the best algorithm,
we experiment with different designs and pick the best one in
practice.

For the individual local sort at the data source, we prefer in-
place sorting to minimize memory footprint. The performance
just needs to be higher than the IO speed so that computation
latency could be hidden. Since the single disk hard drive read
speed is 150MB/s, for 100-byte record, the cut-off perfor-
mance is 1.5 million records per second. We picked QuickSort
as the algorithm and use the implementation of GlibC qsort.

When hundreds or thousands of sorted list needs to be
merged, we use the merge capability of heap-sort to form a
multi-way merging to minimize memory foot print. Initially,
a priority queue, i.e. heap, is formed using the head of all
sorted list. The merged list is formed by extracting the head
of the queue one by one. Every extracted element is replaced
by the head of the corresponding input list, and thus the
priority queue’s ordering property is kept during the process.
Heap sort implementation is adopted based on the heapsort
in BSD LibC from Apple’s open source site [5]. We keep its
heapify macros for the implementation efficiency, but revise
the sort function to facilitate the multi-list merge process. The
algorithm is presented in Algorithm 3. The performance of
merging determines the merging threshold m, i.e. the number

Algorithm 3 First-level premerger based on heap sort
Require: m, array, boundary, destination

1: procedure MERGE
2: heap← []
3: for i = 1..m do . Initialize heap
4: heap[i].Key = array[boundary[i].Start]
5: heap[i].Position = boundary[i].Start
6: heap[i].Tail = boundary[i].End
7: end for
8: for i = m/2..1 do . Heapify
9: CREATE(i) . BSD LibC macro to build heap

10: end for
11: while heap not empty do
12: APPEND(destination, array[heap[1].Position])
13: heap[1].Position ++
14: if heap[1].Position==heap[1].Tail then
15: k ← heap[m]
16: m← m− 1
17: if m==0 then
18: break
19: end if
20: else
21: heap[1].Key = array[heap[1].Position]
22: k ← heap[1]
23: end if
24: SELECT(k) . BSD LibC macro to recover heap
25: end while
26: end procedure

of sorted lists required to trigger a merging thread. The last
merging accompanying writing thread should be faster than the
disk access speed to hide its latency. Our experiments show
that for merging even over a thousand lists, the performance
is still faster the disk access speed.

We also optimized the comparison operator to improve the
performance for comparison sort. For string comparison where
the order is defined in memcmp, we convert byte sequences
into multiple 64-bit or 32-bit integers to minimize the compar-
ison instruction counts. Such optimization has shown moderate
performance improvement. The comparison operator could
also be defined by users to accommodate different sorting
types or orders.

D. Communication

Like many cloud applications, distributed sorting requires
all-to-all reliable communication pattern. Therefore, each of
the node instantiate N − 1 sender and N − 1 receiver
threads for TCP/IP communication. In our work, we use
the runtime system from the Go programming language to
multiplexes these lightweight threads onto system threads for
communication. Without such runtime management, setting up
2N − 2 system threads for communication scales poorly with
N . Prior efforts like TritionSort [4] or CloudRAM sort [6]
uses one dedicate communication thread to poll data from all
computation threads and distribute them to all destination. On
the other hand, by leveraging the Go runtime, we are able to

SORT BENCHMARK 2014 5

TABLE V
EXTERNAL SORT DATA BUFFERING COMPARISON

System # of movements in HDD # of movements in DRAM

Hadoop [3] 3 or 4 6
TritonSort[4] 2 5
DeepSort < 2 4

Keymsb Ld Pos

10 Bytes 2 Bytes 4 Bytes

Starting
Position

Data Length

Example construction

Fig. 2. The pointer structure to link the key array to the data array

implement highly scalable communication without additional
code complexity.

To save the round-trip latency of data fetching, we adopt
push-based communication in which the data source side
initiate the transfer. The locally sorted lists are pushed to
the destination. We also prioritize key transfer over value
transfer so that the destination-side merging can start as early
as possible.

To avoid destination overflow in push-based communica-
tion, we orchestrate the communication using a light-load syn-
chronization mechanism between two rounds of data transfer.
After a node finishes writing temporary data of a round, it
broadcasts one byte synchronization message to all the peers
notifying its progress. A node starts reading the input data
of the next round after local disk writes concludes but hold
the data transfer until it receives the synchronization messages
from all the peers. This light all-to-all synchronization is per-
formed during a relative idle period of network, and overlaps
with disk access and sorting.

E. Memory Management

The memory management design goal is to minimize data
movements for high performance and full utilization of re-
sources. As shown in Table V, DeepSort minimizes data
movements within hard drives and DRAM. Data records in
the last sorting round read and write hard drives only once for
input and output. The rest of records have one more trip to
hard drives for intermediate buffering due to the fact that the
aggregated memory size is smaller than overall data size.

DeepSort also minimizes the segmentation of memory and
eliminates frequent movements of data within memory using
the efficient memory management mechanism. Although Go
language has its own mark-and-sweep garbage collection
mechanism, in practice it could not recover released memory
space immediately. Therefore, we manage the key and value
spaces ourselves while leaving trivial memory usage to Go
runtime.

DeepSort hosts two globally shared arrays that are persistent
and takes the majority of available system physical memory.
The first array stores the data values, which are large but
infrequently access, and the second array stores the keys,
which are frequently accessed and altered, with corresponding
pointers to the data array. We refer to them as data array,
and key array, respectively. In this memory structure, the only
overhead per record is the pointers that link the key array to
data array. We have plotted the pointer from the key array to
the data array in Figure 2.

The pointer structure is parameterized to handle various key
and value sizes. It has three fields. An illustrative construction
is presented in Figure 2 and described as below.

1) Keymsb is the most important bytes of the key. Its size is
a fixed configuration parameter. Users can write custom
compare functions that further tap into the data array as
the extension of the key. This is made possible as the
whole structure is passed into sort and merge functions
and the data array is globally visible in a process. In the
example construction, we set the size to 10 bytes.

2) Ld represents the size of the payload data in terms of a
predefined block size Bs. The actual payload data size
is Bs × (Ld + 1) bytes. For instance, we configure the
parameter Bs as 90 bytes and the width of Ld to two
bytes so that the variable payload size for each record
can be up to 5.9 MB. For the fixed size 90-byte payload,
we set Ld to 0.

3) Pos indicates the starting location of the data block.
Although the key array is frequently manipulated for
sorting, merging, and splitting, the data array doesn’t
move until records have been assembled for network
communication or disk accesses. At that time, the data
is assembled the same as the input format but with a
different order based on the key array.

For performance optimization, it is desirable to align the size
of the pointer structure to cache-line and memory access. In
the shown example, the structure size is 16 bytes.

The key array and data array are shared globally between
source sides and destination sides. They are working as
circular buffers. When sorted data from peers have arrived,
they are appended to the end of the array. When locally
sorted data have been released from the source, their space
is reclaimed. There is a dedicate thread that manages global
resources in parallel with other activities. To accommodate the
buffering behavior and moderate skewed data set, the global
arrays have auxiliary space that can be configured depends on
application. Once the auxiliary space is about to be exhausted
from receiving large amount of the extremely skewed data,
the memory management thread will notify the second level
merging threads to start spilling data to disks. Space will be
freed after spilling, and such mechanism might iterate multiple
times.

Figure 3 shows five snapshots of the key array memory
layout. The process is explained as follows:

a) In the beginning of a round, the locally read data starts
filling the memory. There might be some leftovers from
previous round. All nodes synchronize with each other and

SORT BENCHMARK 2014 6

Local read data

Freed space

Received data

Data being spilled
a) Round starts. Some data
read; some data from the

previous round

b) All local data read; Some
data sent; some data received

c) Merging and spilling data;
most data sent; most data

received

d) Spilled data free up space;
Finish the remaining send and

receive

e) All data sent and received;
remaining data for next round

Fig. 3. Snapshots of memory layouts as a circular buffer.

get ready for all-to-all communication.
b) In the middle of a round, more data has been read. The

initial batches of data has been sent out, and the space has
been freed. Data has been received from peers of this round,
and the memory gets filling up. The first-level mergers start
processing received sorted lists.

c) Towards the end of a typical round, after all local data has
been read, the disks are free to be written. The second-level
mergers start to merge and writers start spilling sorted lists.
If it is the last round, the spilling will wait until all data
has been received.

d) Towards the end of a extremely skewed round, data is
being received to fill the full memory space. Memory
management thread notifies second-level mergers to spill
data out to free space.

e) At the end of a round, all current round data have been
received and sent. If the round is not the last, there might
be leftovers for the next round.

F. Replication Strategy

We use erasure code to protect data failures across nodes.
As an optional feature of DeepSort, replication can be turned
on to protect data failures of up to two nodes in Daytona
Sort. It can also be turned off for better performance in Indy
Sort. Replication applies to input and output data but not
intermediate data.

Specifically, we use Minimal Density RAID-6 Coding
across nodes. This is a Maximum Distance Separable (MDS)
codes. For every k nodes that hold input and output data, we
use extra m nodes to hold codes that are calculated from the
original k nodes. Since it is a MDS code, the system is able
to tolerate any m nodes loss. We divided all nodes n into
n/k k-node groups in a circle. The calculated m codes from
each group are evenly distributed in the k nodes of the next
group. In Figure 4, we show an illustration of data layout for
a total of 6 nodes with k equaling 3 and m equaling 2. Using
RAID-6 coding, we can trade-off between disk bandwidth and
computation resources without sacrificing the data replication
rate. In our Daytona sort experiments, we set k equals 8 and
m equals 2. Therefore, it could tolerate at most 2-node failures
and the extra disk bandwidth required for replication is only
25% of the data size.

For encoding and decoding, our implementation uses Jera-
sure erasure coding library from University of Tennesse [7].
We embedded this codec into our sorting pipeline. Decoding
is part of data read. If any node loss or data corruption is

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5

Group 0 Group 1

Data 0

Data 1

Data 2

Code 0

Code 1

Code 2

Major Minor

data blocks m=3 code blocks k=2

Legend:

Fig. 4. Illustration of data layout for replication

detected, the data has to be pulled from multiple nodes to
recover missing data. In case of no loss, the decoding is
simplified as a direct read from data hard drives. Encoding is
embedded in the final data write. We have completely overlap
the computation, communication, and disk access for the write
replication process. Figure 5 illustrates such pipeline.

On the destination side of DeepSort, the encoding process
starts after initial sorted data has been merged and assembled
in the pipeline, as shown in Figure 5. While the sorted data is
being committed into hard drives, they are also being sent to
major encoding nodes in the next k-node group. For each block
of data, the location of the major encoding node is calculated
based on a round-robin formula for workload balance across
nodes and disks. In the major coding node, all k blocks
of data are gathered and passed to the Jerasure library for
coding. After encoding computation, m blocks of the data are
generated. The first coding block is written to the local disk,
and the rest are sent to minor coding nodes. For instance, in
Figure 4, there are two 3-node group. The lowest order sorted
data from all nodes of the first group are destined for the first
node in the second group, i.e. “Node 3” is the major coding
node. “Node 4” is the minor coding node for the lowest order
sorted data from all nodes of the first group. After the data
and codes have been written, a ledger file is recorded on the
major and minor coding nodes for completeness check.

The erasure decoding process is similar to the encoding

SORT BENCHMARK 2014 7

Merging data

Write data to local
disks

Send data to a round-
robin node in the next

group

D
at

a
no

de
M

aj
or

 C
od

in
g

N
od

e
M

in
or

 C
od

in
g

N
od

e

Erasure coding
data

Write local part
of the code

Send remote
part of the code

Write code

Written data synchronized with disks

Fig. 5. Data pipeline of erasure coding

TOR Switch TOR Switch TOR Switch TOR Switch TOR Switch TOR Switch

TOR Switch TOR Switch TOR Switch TOR Switch TOR Switch

36 Servers per TOR
Out of TOR: bandwidth 280Gbps

Fig. 6. Network topology of the cluster

process. Coding nodes collect short acknowledgment messages
from data nodes. Major coding nodes compare them with
ledgers for completeness and send short acknowledgment
messages to minor coding nodes. In case of data node failures
or timeout, major coding nodes actively collect data from
data nodes and minor coding nodes to reconstruct missing
data using erasure decoding function in Jerasure library. The
master node will also notice the failure and avoid generating
splitters for the failed nodes. The reconstructed data behaves
like normal input data from the major coding nodes but with
a reconstruction label. In case of failures or time out at
major coding nodes, the minor coding nodes act as major
coding nodes for completeness check or reconstruction. The
timeout value is configurable and defaults to three times of
the approximate duration of read and communication at each
round. Specifically, for Daytona Minute Sort, the timeout is 45
seconds and for Daytona Gray Sort, the timeout is 1.5 minutes.

III. HARDWARE AND SYSTEM SETUP

A. Server Configuration

In our experiments, we used our production compute cluster
comprising nearly 400 Dell PowerRidge R720 commodity

servers, each with two 22nm Intel Xeon E5-2620V2 processors
per node running at 2.10GHz with a 7.2 GT/s QPI connection.
Each processor has six cores with HyperThreading enabled
and 15MB L3 cache. There are four 16GB DDR3-1600
RDIMMs and eight 3TB 7.2K RPM SAS hard drives in each
server. There is no RAID configuration across disks within
a node. With ext4 file system equipped, each hard drive is
measured to have approximately 150MB/s read speed and
120MB/s write speed. However, since we do not control the
placement of data, the disk speed varies substantially. There is
no striping within a node. The actual number of active nodes
in each experiment varies because this is a production cluster,
and we can only isolate a majority of relatively idle machines
for some short time slots.

We are running Cent OS 6.4 with Linux Kernel version
2.6.32. Source code are compiled using Go version 1.3.1 and
GCC version 4.4.7.

Our network infrastructure is shown in Figure 6. Each of
the server has a 10Gbps full-duplex Ethernet port. These
servers form a two tier fat-tree network topology. Approxi-
mately 36 servers share a Quanta top-of-rack (TOR) switch.
Eleven TOR switches connect to six Cisco core switches with
280Gbps rack-to-spine connection. The effective TOR:Spine
subscription ratio is 1.28:1. The TOR switches are the network
bottleneck and the effective out-of-TOR raw bandwidth is
approximately 7.7 Gbps per node.

B. Performance Expectation

The design of DeepSort tries to hide computation, com-
munication, memory management all behind disk IO access.
Therefore, the performance expectation is straightforward to
calculate.

For multi-round sort, the data has to pass disks twice.
Assuming 400 nodes with 3200 disks, 150 MB/s read speed,
and 120 MB/s write speed, the aggregated throughput is
approximately 6.4 TB/min. Our Indy Gray Sort is about 62%
of this idealized value.

For single-round sort, the data has to pass disks once.
Assuming 400 nodes with 3200 disks, 150 MB/s read speed,
and 120 MB/s write speed, the aggregated throughput is
approximately 12.8 TB/min. Our Indy Minute Sort is about
41% of this idealized value.

IV. EXPERIMENT RESULTS

A. Data Preparation and Validation

The data is prepared and validated based on SortBench-
mark’s gensort and valsort programs, respectively. The input
data is distributively generated in binary records. Each record
has a 10-byte key and 90-byte value. Each hard drive in the
cluster contains an input data file with codec information. For
Daytona sort, we modify the gensort program so that the
erasuring codes are generated with the input data. For Indy
sort, we use gensort directly across all nodes. For Indy sort,
only uniform random data are generated. For Data sort, we
also generate skewed data set. After the DeepSort is finished,
the output is distributed across all the hard drives in a global
order. The concatenation of these files forms a sorted list of

SORT BENCHMARK 2014 8

TABLE VI
INDY GRAY SORT

Amount of Data 109.728 TB
Duplicate Keys 0
Input Checksum 7fbd7a61ae81a41542

Trial 1 26 min 19.283 sec
Trial 2 27 min 28.803 sec
Trial 3 27 min 29.883 sec
Trial 4 27 min 42.999 sec
Trial 5 27 min 36.875 sec

Output checksum 7fbd7a61ae81a41542
Median time 27 min 29.883 sec
Sort rate 3.99 TB/min

records. We validate the order and data checksum using the
valsort program.

We measure the overall execution time using the Linux time
utility. All experiments have been running longer than an hour.
To make sure that the sorting is performed strictly from disk
to disk, three things have been taken care of: 1) We clear
the operating system in-memory file caches before each run
using Linux drop caches; 2) Output data is synchronized with
hard drives after each run; 3) After being validated, the output
files from the previous run are removed before the current run
starts.

No compression is used at any stage of the program.
We measure the data size in a consistent manner of Sort

Benchmark rules such that one terabyte (TB) equals 1012

bytes, and one gigabyte (GB) equals 109 bytes.

B. Gray Sort Indy Results

For the Indy variant of Gray Sort, we sorted 109.728 TB
data in about 1650 seconds, yielding 3.99 TB per minute
sorting rate.

Specifically, we use 381 nodes of the cluster. Each
node hosts about 288GB data. The input checksum is
7fbd7a61ae81a41542 without duplication. We’ve sorted this
data over five consecutive trials, and the running times reported
by time utility are listed in Table VI. The output checksums
are all verified to be 7fbd7a61ae81a41542.

C. Gray Sort Daytona Results

For the Daytona variant of Gray Sort, we sorted 101.376TB
uniform random data in 2050 seconds, yielding 2.97 TB per
minute sorting rate. The sorting time for skewed data is less
than twice of the random data.

Specifically, we use 384 nodes of the cluster.
Each node hosts 264GB data. The input checksum is
76046478aca758c4d9 without duplications. We’ve sorted
this data over five consecutive trials, and the running times
reported by time utility are listed in Table VII. The output
checksums are all verified to be 76046478aca758c4d9.

We also prepared skewed dataset and run DeepSort using
384 nodes of the cluster, totaling 101.376TB of skewed
data with a checksum of 760464fe84f3bb8567. There are
31152217581 duplicate keys in the input. We’ve also sorted the
skewed data over five consecutive trials, and the running times

TABLE VII
DAYTONA GRAY SORT RANDOM

Amount of Data 101.376 TB
Duplicate Keys 0
Input Checksum 76046478aca758c4d9

Trial 1 33 min 59.685 sec
Trial 2 33 min 45.209 sec
Trial 3 35 min 1.511 sec
Trial 4 34 min 36.252 sec
Trial 5 34 min 10.044 sec

Output checksum 76046478aca758c4d9
Median time 34 min 10.044 sec
Sort rate 2.97 TB/min

TABLE VIII
DAYTONA GRAY SORT SKEWED

Amount of Data 101.376 TB
Duplicate Keys 31152217581
Input Checksum 760464fe84f3bb8567

Trial 1 43 min 17.953 sec
Trial 2 43 min 54.304 sec
Trial 3 40 min 48.561 sec
Trial 4 39 min 43.702 sec
Trial 5 44 min 1.277 sec

Output checksum 760464fe84f3bb8567
Median time 43 min 17.953 sec
Sort rate 2.34 TB/min

reported by time utility are listed in Table VIII. The checksums
of output files are 760464fe84f3bb8567. The median sorting
time is about 2598 seconds which is less than twice of the
random data sorting time.

D. Minute Sort Indy Results

For the Indy variant of Minute Sort, we sorted 5249.6 GB
data in 59.859 seconds, which is the median time of 17
consecutive runs.

Specifically, we use 386 nodes of the cluster. Each
node hosts about 13.6GB data. The input checksum is
61c8003b9d8c8b40d without duplication. We’ve sorted this
data in seventeen consecutive trials, and the running times
reported by time utility are listed in Table IX. The output
checksums are also 61c8003b9d8c8b40d. There is no inter-
mediate data for Minute Sort.

E. Minute Sort Daytona Results

For the Daytona variant of Minute Sort, we sorted 3686.4GB
random data in 57.675 seconds which is the median time of
17 consecutive runs. The sorting time for skewed data is less
than twice of the random data.

Specifically, we use 384 nodes of the cluster. Each
node hosts 9.6GB input data. The input checksum is
44aa164cc14340759 without duplications. We’ve sorted this
data in seventeen consecutive trials, and the running times
reported by time utility are listed in Table X. The outputcheck-
sum is also 44aa164cc14340759. There is no intermediate data
for Minute Sort.

SORT BENCHMARK 2014 9

TABLE IX
INDY MINUTE SORT

Amount of Data 5249.6 GB
Duplicate Keys 0
Input Checksum 61c8003b9d8c8b40d

Trial 1 0 min 58.910 sec
Trial 2 0 min 57.136 sec
Trial 3 0 min 59.537 sec
Trial 4 0 min 57.855 sec
Trial 5 0 min 58.142 sec
Trial 6 1 min 1.843 sec
Trial 7 0 min 59.859 sec
Trial 8 1 min 4.309 sec
Trial 9 1 min 16.645 sec
Trial 10 0 min 58.581 sec
Trial 11 1 min 2.380 sec
Trial 12 0 min 59.456 sec
Trial 13 1 min 1.352 sec
Trial 14 1 min 0.455 sec
Trial 15 1 min 4.131 sec
Trial 16 1 min 4.793 sec
Trial 17 0 min 57.127 sec

Output checksum 61c8003b9d8c8b40d
Median time 0 min 59.859 sec

TABLE X
DAYTONA MINUTE SORT RANDOM

Amount of Data 3686.4 GB
Duplicate Keys 0
Input Checksum 44aa164cc14340759

Trial 1 0 min 57.299 sec
Trial 2 0 min 55.581 sec
Trial 3 0 min 59.408 sec
Trial 4 0 min 57.675 sec
Trial 5 0 min 59.146 sec
Trial 6 0 min 56.590 sec
Trial 7 0 min 55.557 sec
Trial 8 0 min 57.937 sec
Trial 9 0 min 59.300 sec
Trial 10 0 min 57.017 sec
Trial 11 0 min 59.858 sec
Trial 12 0 min 51.672 sec
Trial 13 0 min 59.145 sec
Trial 14 1 min 1.159 sec
Trial 15 0 min 59.053 sec
Trial 16 0 min 56.647 sec
Trail 17 0 min 54.610 sec

Output checksum 44aa164cc14340759
Median time 0 min 57.675 sec

We also prepared skewed dataset and run DeepSort using
384 nodes of the cluster, totaling 3686.4 GB of skewed data
with a checksum of 44aa2f5711f86b65f. There are 66369138
duplicate keys in the input. We’ve also sorted the skewed data
in seventeen consecutive trials, and the running times reported
by time utility are listed in Table XI. The output checksums
are also 44aa2f5711f86b65f, and the median sorting time is
91.157 seconds, which is less than twice of the random input
sorting time.

V. ACKNOWLEDGMENT

DeepSort results are made possible with the strong support
of all members in the Cloud Research Lab of Samsung Re-
search America, Silicon Valley. Specifically, Lohit Giri, Venko

TABLE XI
DAYTONA MINUTE SORT SKEW

Amount of Data 3686.4 GB
Duplicate Keys 66369138
Input Checksum 44aa2f5711f86b65f

Trial 1 1 min 33.686 sec
Trial 2 1 min 23.333 sec
Trial 3 1 min 33.077 sec
Trial 4 1 min 51.229 sec
Trial 5 1 min 25.131 sec
Trial 6 1 min 30.805 sec
Trial 7 1 min 27.761 sec
Trial 8 1 min 33.522 sec
Trial 9 1 min 33.351 sec
Trial 10 1 min 24.555 sec
Trial 11 1 min 31.157 sec
Trial 12 1 min 28.696 sec
Trial 13 1 min 27.028 sec
Trial 14 1 min 26.570 sec
Trial 15 1 min 31.841 sec
Trial 16 1 min 33.769 sec
Trial 17 1 min 39.421 sec

Output checksum 44aa2f5711f86b65f
Median time 1 min 31.157 sec

Gospodinov, Hars Vardhan, and Navin Kumar have helped
with the infrastructure provision. Minsuk Song, Jeehoon Park,
Jeongsik In, and Zhan Zhang have helped with the networking.
Hadar Isaac and Guangdeng Liao have advised on the sorting
design. Thomas Phan have helped with the writing. We would
like to appreciate Sort Benchmark committee members (Chris
Nyberg, Mehul Shah, and Naga Govindaraju) for valuable
comments.

REFERENCES

[1] C. Nyberg, M. Shah, and N. Govindaraju, “Sort FAQ (14 March 2014),”
http://sortbenchmark.org/FAQ-2014.html, 2014, [Online].

[2] J. Huang and Y. Chow, “Parallel sorting and data partitioning by
sampling,” in IEEE Computer Society’s Seventh International Computer
Software and Applications Conference (COMPSAC’83), 1983, pp. 627–
631.

[3] T. Graves, “GraySort and MinuteSort at Yahoo on Hadoop 0.23,” http:
//sortbenchmark.org/Yahoo2013Sort.pdf, 2013.

[4] A. Rasmussen, G. Porter, M. Conley et al., “Tritonsort: A balanced large-
scale sorting system,” in Proceedings of the 8th USENIX conference on
Networked systems design and implementation, 2011, p. 3.

[5] “Heap sort,” http://www.opensource.apple.com/source/Libc/Libc-167/
stdlib.subproj/heapsort.c, 1999, [Online].

[6] C. Kim, J. Park, N. Satish et al., “CloudRAMSort: fast and efficient large-
scale distributed RAM sort on shared-nothing cluster,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Management of
Data, 2012, pp. 841–850.

[7] J. S. Plank and K. M. Greenan, “Jerasure: A library in C facilitating
erasure coding for storage applications – version 2.0,” University of
Tennessee, Tech. Rep. UT-EECS-14-721, January 2014.

http://sortbenchmark.org/FAQ-2014.html
http://sortbenchmark.org/Yahoo2013Sort.pdf
http://sortbenchmark.org/Yahoo2013Sort.pdf
http://www.opensource.apple.com/source/Libc/Libc-167/stdlib.subproj/heapsort.c
http://www.opensource.apple.com/source/Libc/Libc-167/stdlib.subproj/heapsort.c

	Introduction
	Design of DeepSort
	Design Overview
	Partition of the key space
	Sort and Merge
	Communication
	Memory Management
	Replication Strategy

	Hardware and System Setup
	Server Configuration
	Performance Expectation

	Experiment Results
	Data Preparation and Validation
	Gray Sort Indy Results
	Gray Sort Daytona Results
	Minute Sort Indy Results
	Minute Sort Daytona Results

	Acknowledgment
	References

