
Indy Gray Sort and Indy Minute Sort
Dasheng Jiang

Baidu Inc. & Peking University
July, 2014

Overview
We have built a sorting system to improve performance of Indy Minute Sort and Indy Gray Sort

on a large cluster. The reported results are:
Indy Minute Sort, sort 7TB in 56.69s on 993 machines

Indy Gray Sort, sort 100TB in 716.10s on 982 machines

System Configuration
Machines: 993 nodes for Minute Sort and 982 machines for Gray Sort, one as master and the rest as
slaves
Operating System: Red Hat Enterprise Linux AS release 4 (Nahant Update 3)
Processors: 2 * Intel Xeon(R) E5-2450, 2.10GHz, 32 cores
Memory: 192GB, 1333MHZ
Disks: 8 * 3TB, 7200rpm SATA
Network: 10Gb/s, full duplex, 3:1 subscription
JDK: jdk6u45

Indy vs. Daytona
Indy and Daytona are two very different kinds of benchmark on the large cluster. Former system

tends to treat Indy as a special case of Daytona and using the same code and configuration with
little modification. However, the less restricted Indy sort is actually an attempt to archive the
theoretical upper limit of the hardware, whatever the bottleneck might be. While Daytona need a
system providing fault tolerance which will degrade the performance inevitably.

We would rather explore the hardware limit as the target cluster contains thousands of machines
with large memory, so we aim at Indy instead of Daytona. We find TritonSort[1] was a well-
designed system with main focus on disk performance and we extend their experiments from 52
machines to thousands.

Architecture
TritonSort[1] was the past winner which archived near optimal performance on a single rack. In

our system we use the architecture of TritonSort with small modifications. We will briefly introduce
the entire pipeline of the workflow. Please consult [1,2] for detailed design choice.

TritonSort splits the sorting process into two phases. Phase one reads the input, sends records
over network and writes on the receiver nodes. Node distributor ensures data volume is
approximately even among all receivers. Logical Disk Distributor ensures each output file is small
enough to be processed in memory in phase two. Coalescer ensures each write request is large
enough to guarantee disk performance.

The file written on Intermediate Disk is a logical unsorted version of output file. Phase two
simply reads the logical file, sorts it and writes to local disk.

The pictures below are the pipeline of phase one & phase two in TritonSort. Only the thread
number may differ from the original version.

!
Figure 1: Pipeline of phase one in TritonSort Architecture, from [1]

!
Figure 2: Pipeline of phase two in TritonSort Architecture, from [1]

We have several small modifications to the original architecture. A key difference between
TritonSort and our system is the number of machines which indicates we have far more available
memory. In such scenario, we add application level cache to ensure that no intermediate data are
written to local disk in the Minute Sort. This removes possible bottleneck in the Writer stage of
phase one and Reader stage of phase two. In Gray Sort, only a portion of the data are cached.

With more intermediate data being cached, disk IO is less likely to become the bottleneck in
phase one. So in our configuration, there are no reason to separate disks into two sets as in
TritonSort. The Intermediate Disk in the pictures above are equivalent to Input/Output Disk.

Besides, the intermediate data are evenly distributed among all disks (not only machines) in
TritonSort. In larger cluster with thousands of disk, performance could vary remarkably. We choose
to evenly distribute data among machines. But the amount of data read/written on each disk could
vary depending on its performance. In the Write stage of phase one & two, we choose disk
adaptively for the write request.

Implementation
Basic Settings

Since Indy doesn't require fault tolerance, we use one replication for both input and output files.
And we treat disks as JBOD.

We have one input file on each disk with approximate equal size. The size of output file is about
250MB each, so there are 28,000 output files in Minute Sort and 400,000 in Gray Sort.

The method we use to distribute data on each machine (Node Distributor) is equivalent to
SimplePartitioner in Hadoop. Logical Disk Distributor use similar method and the size of logical
file is the same as output file.

Our system doesn't handle system/disk failure and we have to remove a few machines due to
such failure or other performance consideration.

Sorting Algorithm
Although the sorting performance is a neglectable part in the overall performance, a better sorting

algorithm could be helpful in CPU intensive scenario. We use a hybrid sorting algorithm which
sorts the first 4-byte of key using radix sort (LSD) in the first pass. Then we apply quick sort on the
partially sorted results.

!
Figure 3: Hybrid Sorting Algorithm

We optimize the algorithm to reduce the memory footprint. Instead of sorting pointers, we
directly sort the 4-byte key with index. The algorithm costs 360ms CPU time to sort 256MB data in
our environment.

Although single thread can match the speed of pipeline, we use 4 threads in Gray Sort and 16
threads in Minute Sort to reduce 1 ~ 2 seconds in filling up the writer pipeline.

Network Transfer
We use ZeroMQ [3] as our all-to-all network transfer library. The transfer rate is more than

800MB/s on a 20-node cluster, and 360MB/s on the large cluster due to subscription.
It works well on the 20-node cluster, but it breaks down due to on large cluster. We observe

nearly half the runs failed because of package loss. And the loss rate is around one in one million
packages. We track the lost packages and find that they are continuous and belong to one or two
socket pairs in a short period. Our best guess would be a temporarily disconnection of TCP which
cause the problem. We don't have conclusive answer since it cannot be reproduced on a small
cluster. We have to add an ACK mechanism to guarantee the correctness. For the time being, we
cache all data on the Sender even though only little portion need to be resent.

Bottleneck
The bandwidth of Writer in phase one can surpass 400MB/s when we test on the small cluster

without cache. Therefore, with cache applied, subscription makes network an obvious bottleneck in
phase one. We also find the fastest sender completes in 22s in Minute Sort while the slowest needs
32s. The difference is beyond our expectation and requires further exploration.

In phase two, Writer is the bottleneck. The cost is not only the waiting time of disk IO but also
the CPU time spent on random read in the memory. We reduce the total time by using two writer
threads for each disk. And the straggler is under control because the maximum time difference of
the fastest disk and the slowest disk on the same machine is the time of writing two files. The
machine level difference is also steady and less than phase one.

Results
We use Linux drop cache and then warm up the JVM before each run. The time is measured by 1

the “time” command and includes all processes time on master and slaves. (1TB = 1e12 bytes)

Acknowledgements
I would like to thank YangYi from Baidu Infrastructure Department for supervising me during

my internship in Baidu. I won't be able to accomplish the experiments without his help in providing
the platform and offering technical support. I’d also like to thank all the members in the Hadoop
team of Baidu for their kind support.

Reference
[1] TritonSort, past winner, http://sortbenchmark.org/2011_06_tritonsort.pdf
[2] A. Rasmussen, G. Porter, M. Conley, H. V. Madhyastha, R. N. Mysore, A. Pucher, and
A. Vahdat. TritonSort: A Balanced Large-Scale Sorting System. In NSDI, 2011
[3] ZeroMQ, zeromq.org

Indy Minute Sort Indy Gray Sort

Data Volumn (TB) 7 100

Runs 15 5

Media time (s) 56.69 716.10

Min time (s) 51.28 710.29

Max time (s) 85.737 725.51

Checksum 826284e18bd1ea31c 746a51007040ea07ed

Duplicate keys 0 0

 We start a JVM and terminate it to ensure all libraries required are from memory.1

http://sortbenchmark.org/2011_06_tritonsort.pdf
http://zeromq.org

