
AMR5: Sorting 1TB with a mobile processor

Phillip Griffith

March 6, 2024

1 Introduction
This paper summarizes the configuration, benchmark
steps, and results of a system that was built to improve
upon the 1TB JouleSort benchmark (Indy Category). I
use a desktop Mini PC equipped with an AMD Ryzen 7
5800U mobile CPU, and show an improvement over the
current 2022 JouleSort world record [1].

My desktop Mini PC is a modified ACEMAGIC
AMR5 Ryzen 7 5800U[2] equipped with two 2TB SSDs,
64GB of RAM, and a case fan. The system is powered
by an external 65W power brick that comes standard with
the AMR5. Using this hardware, I am able to sort a 1TB
file, with 1010 records, in an average time of 1641 sec-
onds, running at an average 32W (real power), consum-
ing an average of 52,750 joules.

2 Hardware
The AMR5 Mini PC ran the JouleSort benchmark in
a headless configuration, with no keyboard, mouse, or
monitor attached. I used ssh to get a shell session over
the network. The AMR5 is equipped with RGB LEDs,
which I left connected.

2.1 Storage
I equipped the AMR5 with two 2TB Samsung 970 Evo
Plus SSDs, for a total 4TB of sort storage. I used a single
Samsung BAR Plus 64GB USB drive to hold the operat-
ing system and sort software.

2.2 CPU
My AMR5 Mini PC is equipped with a single AMD
Ryzen 7 5800U CPU. AMD’s data sheet for the 5800U
rates it with a default TDP of 15W, and a configurable
TDP of 10-25W, with 8 cores and 16 threads. The
base clock is 1.9GHz, and the maximum boost clock
is 4.4GHz. The 5800U is a Zen 3 chip, codenamed
“Cezanne”.

The AMD 5800U CPU was a very deliberate choice
for the JouleSort benchmark. This CPU ranks fairly high

on the Passmark Power Performance Ranking [3], and
it’s available at a reasonable price with the AMR5 Mini
PC.

The AMR5 Mini PC has a performance knob that se-
lects between silent, auto, and performance modes. Al-
though technical documentation for the AMR5 is sparse,
this knob seems to regulate the CPU’s frequency, and
hence the power draw, heat, and fan speed as well. I left
this knob at its lowest setting of silent for the JouleSort
benchmark.

The AMR5 Mini PC idles at about 9W.

2.3 Cooling
The AMR5 Mini PC ships with a CPU fan, but no case
fan. To provide cooling for the SSDs, I enclosed them
with copper heat sinks, and replaced one side of the case
with a 140mm USB powered fan, rated at 1.5W. The
power source for this fan is a USB port on the AMR5
Mini PC. Using this improvised case fan, the SSD tem-
peratures stay about 9C below their rated maximum dur-
ing the JouleSort benchmark.

2.4 Price List
All hardware components used in this system are com-
mercially available at the time of this writing.

Part # Unit price Total price
ACEMAGIC AMR5 AMD Ryzen 7 5800U Mini PC Barebone 1 $296.98 $296.98
Samsung BAR Plus 64GB - 300MB/s USB 3.1 Flash Drive 1 $11.99 $11.99
AC Infinity MULTIFAN S4, Quiet 140mm USB Fan 1 $15.99 $15.99
Crucial RAM 64GB Kit (2x32GB) DDR4 3200MHz CL22 1 $105.09 $105.09
icepc M.2 PCIE NVME 2280 SSD Copper Heatsink 2 $15.99 $31.98
Samsung 970 EVO Plus SSD 2TB NVMe M.2 2 $79.99 $159.98
watts up? PRO Power Analyzer (used) 1 $94.00 $94.00
System Total $716.01

Table 1: Price List

3 Software
I installed Ubuntu Server 23.04 (GNU/Linux 6.2.0-31-
generic x86_64) on the 64GB USB drive, and ran it from
there. I used Nsort version 3.4.61 (Linux-X64) from Or-
dinal Technology to perform the sort.

1

Figure 1: The AMR5 Mini PC with its power supply, and
a case fan attached with bungee cords.

3.1 Storage Configuration
The two 2TB SSDs are joined together in a RAID 0
configuration to form a single 3.7TB volume, using
mdadm(8), and mounted on /mnt/md0. The RAID 0 vol-
ume is configured with the default 512KB stripe size.

This 3.7TB RAID 0 volume is used to hold the 1TB
sort input, the 1TB sort output, and the sort work files.

3.2 Sort Filesystem
I chose the Flash Friendly File System (F2FS) to sup-
port the two SSDs in their RAID 0 configuration. I chose
F2FS because it performs well in Phoronix benchmarks
[4].

Sort benchmark rules do not allow data compression.
Although F2FS supports compression, it’s not enabled
by default [5]. To comply with sort benchmark rules, I
refrained from enabling compression when I created the
F2FS filesystem.

phillip@amr5:~$ findmnt /mnt/md0 | cat
TARGET SOURCE FSTYPE OPTIONS
/mnt/md0 /dev/md0 f2fs
rw,relatime,lazytime,background_gc=on, c

discard,no_heap,user_xattr, c
inline_xattr,acl,inline_data, c
inline_dentry,flush_merge,barrier, c
extent_cache,mode=adaptive, c
active_logs=6,alloc_mode=default, c
checkpoint_merge,fsync_mode=posix, c
discard_unit=block,memory=normal

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Listing 1: F2FS mount options

3.3 CPU Frequency Scaling
CPU Frequency Scaling is a method of exerting software
control over how fast the CPU runs. The Arch Linux wiki
has a good overview at https://wiki.archlinux.
org/title/CPU_frequency_scaling. CPU fre-
quency scaling can influence performance per watt, and
performance in the JouleSort benchmark.

For the AMR5’s AMD CPU, I evaluated the
amd_pstate and amd_pstate_epp drivers, before choos-
ing the older acpi_cpufreq driver and the powersave gov-
ernor to conserve energy, and to achieve the best results
for the JouleSort benchmark.

4 Sorting
I used gensort to generate the 1TB ascii sort input file,
and valsort to verify the sort output file. According to
benchmark rules, I ran the sort five times against the 1TB

2

https://wiki.archlinux.org/title/CPU_frequency_scaling
https://wiki.archlinux.org/title/CPU_frequency_scaling

sort input file, and recorded the results. Then I used gen-
sort again to generate a second 1TB sort input file with
skewed keys; then sorted the skewed sort input file, and
reported those results.

phillip@amr5:~/64$ tb=`echo 10^10 | bc`
phillip@amr5:~/64$ echo $tb
10000000000
phillip@amr5:~/64$./gensort -a $tb

/mnt/md0/sortin.txt↪→

phillip@amr5:~/64$ ls -lh /mnt/md0
total 933G
-rwxrwxr-x 1 phillip phillip 932G Sep 9

09:19 sortin.txt↪→

Listing 2: Generating the 1TB input file with gensort

clear pagecache, dentries, and inodes
sync; echo 3 | sudo tee

/proc/sys/vm/drop_caches↪→

date
start=$(date +%s)
echo begin sort
time nsort -processes=16 \

-memory=60000M \
-format=size:100 \
-field=name:key,size:10,off:0,character
\↪→

-key=key \
-statistics \
-in_file=/mnt/md0/skewed_sortin.txt \
-out_file=/mnt/md0/sortout.txt \
-temp=/mnt/md0

sync
date
echo end sort
end=$(date +%s)
echo "Elapsed Time: $(($end-$start))

seconds"↪→

echo "Begin 5 seconds cooling for the
SSDs"↪→

sleep 5
echo "Valsort beginning"
validate output sort file
~/64/valsort /mnt/md0/sortout.txt

Listing 3: bash script used to run Nsort

5 Measurements
I measured the energy consumption of the AMR5 using
a watts up? PRO power meter. The AMR5 Mini PC is
plugged in to the power meter, which is, in turn, plugged
in to the wall. The meter is connected to a separate moni-
toring computer via a USB cable. I followed the example

of ELSAR [1] by using a publicly-available Python util-
ity [6] that reads the meter’s data from the /dev/ttyUSB0
port and saves them to a CSV file. Each reading is times-
tamped in the log file. Both computers use the systemd-
timesyncd(8) service, synchronized to ntp.ubuntu.com.

Nsort statistics in Listing 4 show the CPU was 970%
busy for the input phase, 608% busy for the output phase,
and 764% busy overall. This means Nsort used an aver-
age 9.7, 6.08, and 7.64 CPU threads respectively.

5.1 Calculating energy consumption
For each run, the monitoring computer generates a sep-
arate watt log file, logged at one observation per second.
I multiplied the average watts per second by the number
of seconds between the starting and ending timestamps
to arrive at the joules consumed during the sort. These
calculations include the first and last seconds of the sort.

Run Time(sec) Power (W) Energy (J) Srec/J
1 1635 31.6 51,682 193,491
2 1582 32.1 50,849 196,661
3 1656 32.1 53,119 188,257
4 1695 32.2 54,649 182,986
5 1636 32.7 53,450 187,091
mean 1641 32.1 52,750 189,697
std dev 37 0.3 1,341 4,833
skewed 1677 30.7 51,561 193,945

Table 2: AMR5 Results

The mean power factor of the system was 60 during the
sorts. The room temperature during the sorts was about
78F.

6 About the Author
I’m a retired IT worker with no computer science degree.
My first exposure to sorting came during a computer sci-
ence class in the late 1970s, when the instructor spoke
approvingly of Syncsort on the IBM mainframe. My first
job after college was in an IBM mainframe shop that ran
Syncsort. I got to know Syncsort pretty well on that job.

During the mid 1990s, I moved from the mainframe
to Solaris. I became a Linux hobbyist shortly afterward.
Performance has been a longtime interest, but this project
is my first attempt at publishing a performance bench-
mark.

3

3
Sat Sep 9 09:31:07 AM EDT 2023
begin sort
nsort -processes=16 -memory=60000M -format=size:100 -field=name:key,size:10,off:0,character

-key=key -statistics -in_file=/mnt/md0/sortin.txt -out_file=/mnt/md0/sortout.txt
-temp=/mnt/md0

↪→

↪→

Nsort version 3.4.61 (Linux-X64) using 2954M of memory out of 58G
Pointer sort performed Sat Sep 9 09:31:07 2023

Input Phase Output Phase Overall
Elapsed 688.42 914.55 1602
I/O Busy 424.50 62% 913.74 100% 1338
Action User Sys Busy User Sys Busy User Sys Busy
sort 5950 729 970% 4626 938 608% 10576 1667 764%

Rssmax Majflt Minflt Sort Procs Aio Procs/QueueSize RegionKB
11830.50M 0/7 756755 16 0/8 512
File Name ModeCntTran Busy Wait MB/sec Xfers Bytes Records
Input Reads

/mnt/md0/sortin.txt dir 4x512k 62% 36.73 14541907349 1000000000000 10000000000
Temporary Writes

/mnt/md0 dir 10x1m 74% 373 1455 954903 1000174428160
Temporary Reads

/mnt/md0 dir 10x1m 72% 203 1095 954903 1000174428160
Output Writes

/mnt/md0/sortout.txt dir 4x512k 100% 845 10941907349 1000000000000 10000000000

real 27m45.499s
user 176m16.671s
sys 28m50.270s
Sat Sep 9 09:58:55 AM EDT 2023
end sort
Elapsed Time: 1668 seconds
Begin 5 seconds cooling for the SSDs
Valsort beginning
Records: 10000000000
Checksum: 12a06cd06eeb64b16
Duplicate keys: 0
SUCCESS - all records are in order

Listing 4: Sample run of the sort script

4

References
[1] A. Kristo, P. Pillai, and T. Kraska. Designing

an energy-efficient, learning-enhanced algorithm
to sort 1TB of ASCII data. url: http : / /
sortbenchmark . org / ELSAR2022 . pdf. (ac-
cessed: 09.09.2023).

[2] Acemagician. Ace AMR5 AMD Ryzen Mini PC.
url: https://www.acemagic.com/products/
amr5. (accessed: 09.10.2023).

[3] PassMark Software. PassMark CPU TDP Chart
- Performance / Power of available CPUs. url:
https : / / www . cpubenchmark . net / power _
performance.html. (accessed: 09.09.2023).

[4] M. Larabel. XFS / EXT4 / Btrfs / F2FS / NILFS2
Performance On Linux 5.8. url: https : / /
www . phoronix . com / review / linux - 58 -
filesystems. (accessed: 09.09.2023).

[5] Arch Linux Team. F2FS - ArchWiki. url: https:
/ / wiki . archlinux . org / title / F2FS #
Recommended _ mount _ options. (accessed:
09.09.2023).

[6] Y. Yoon and A. Kristo. Watts Up? Pro/.Net meter
logger. url: https://github.com/anikristo/
wattsup. (accessed: 09.09.2023).

5

http://sortbenchmark.org/ELSAR2022.pdf
http://sortbenchmark.org/ELSAR2022.pdf
https://www.acemagic.com/products/amr5
https://www.acemagic.com/products/amr5
https://www.cpubenchmark.net/power_performance.html
https://www.cpubenchmark.net/power_performance.html
https://www.phoronix.com/review/linux-58-filesystems
https://www.phoronix.com/review/linux-58-filesystems
https://www.phoronix.com/review/linux-58-filesystems
https://wiki.archlinux.org/title/F2FS#Recommended_mount_options
https://wiki.archlinux.org/title/F2FS#Recommended_mount_options
https://wiki.archlinux.org/title/F2FS#Recommended_mount_options
https://github.com/anikristo/wattsup
https://github.com/anikristo/wattsup

	Introduction
	Hardware
	Storage
	CPU
	Cooling
	Price List

	Software
	Storage Configuration
	Sort Filesystem
	CPU Frequency Scaling

	Sorting
	Measurements
	Calculating energy consumption

	About the Author

