
TritonSort 2011

Alexander Rasmussen
University of California San Diego

Michael Conley
University of California San Diego

George Porter
University of California San Diego

Amin Vahdat
University of California San Diego

{arasmuss,mconley,gmporter,vahdat}@cs.ucsd.edu
http://tritonsort.eng.ucsd.edu/

Abstract
We present TritonSort, a sorting system designed to max-
imize system resource utilization. We present the results
for: 1) Indy GraySort and Daytona GraySort, 2) Indy
MinuteSort, and 4) Indy and Daytona 1012 JouleSort.

1 Architecture

For a detailed presentation of the TritonSort architecture,
please consult [2].

TritonSort is composed of a series of tasks that typi-
cally consist of some simple processing on a small piece
of data. We call the small pieces of data that tasks process
work units. Tasks are composed together into a directed
graph so that workers from one task produce work units
for workers in a subsequent task. In the Indy GraySort
version of TritonSort, tasks are further subdivided into
two phases, with a distributed barrier between the first
and second phase. In the Daytona GraySort version of
TritonSort, tasks are divided into three phases (the same
two as with Indy, plus a distributed sampling phase to de-
termine the empirical key distribution of the input data).

A fixed collection of workers, each of which is a
thread, perform a given task. A single worker tracker
for each task coordinates the passing of work units to
and from the workers performing that task. For brevity,
we will name workers based on the task that those work-
ers perform; for example, workers performing the “read”
task are simply called “readers”.

When a worker is ready to send a work unit to the next
stage, it can direct the next stage’s tracker either to give
the work unit to a particular worker or to give the work
unit to the next worker that runs out of work to do.

When a task runs out of work to do, the task’s workers
shut down. When a task tracker is notified that an up-
stream task tracker has shut down, it waits until all out-
standing work units have been processed and then begins
shutting down itself. In this way, the entire graph is shut

down at the end of the phase.
Tasks that are sources in the task graph do not receive

work units from other tasks, but rather generate work
units themselves. In TritonSort, these are tasks that re-
ceive from the network or read from a disk. Tasks that
are sinks in the task graph do not produce work units for
other tasks; these are tasks that write to a disk or transfer
data over the network.

1.1 Disks

We subdivide the disks on each machine into equal num-
bers of input and output disks. In the first phase, input
data is read sequentially from the input disks and inter-
mediate data is written to the output disks. In phase two
the disks’ roles are reversed; intermediate data is read
from the output disks and the final output is written to
the input disks.

Each disk in the cluster stores tuples whose keys are in
a given range. Physical disks are further subdivided into
a number of logical disks, each of which is a file. Each
logical disk on a given physical disk is responsible for
its own disjoint sub-range of that physical disk’s range.
In this way, every tuple can be mapped to a destination
logical disk according to that tuple’s key.

An operator specifies the number of logical disks for
each physical disk before running TritonSort. The num-
ber of logical disks per physical disk is determined dif-
ferently depending on the architecture. For GraySort, the
number of logical disks is chosen such that three logical
disks for each physical disk can be resident in memory at
the same time during phase two; in this way, each worker
in phase two will always have a logical disk to process
at any given time. For MinuteSort, the number of logi-
cal disks is chosen such that all logical disks for a given
node can be resident in that node’s memory simultane-
ously; this is necessary because the logical disks are not
written to disk before they are sorted.



Benchmark Category Variant Data Set Size # Nodes Quantity of Interest
GraySort Indy 100TB 52 6395 seconds (0.938 TB per min.)
GraySort Daytona 100TB 52 8274 seconds (0.725 TB per min.)

MinuteSort Indy 1353GB 66 59.2 seconds median
JouleSort Indy 100TB 52 9704 records/Joule
JouleSort Daytona 100TB 52 7595 records/Joule

Table 1: Submitted benchmark results

Benchmark Category Variant Checksum
GraySort Indy 746a51007040ea07ed
GraySort Daytona 746a51007040ea07ed

MinuteSort Indy 193395a80fb0129db
JouleSort Indy 746a51007040ea07ed
JouleSort Daytona 746a51007040ea07ed

Table 2: Checksums of data sets for each benchmark

2 GraySort Architecture

TritonSort’s architecture for the GraySort benchmark
aims to sort large datasets by reading and writing each tu-
ple exactly twice, which is the theoretical minimum I/O
when the amount of memory in the system is less than the
amount of data to be sorted [1]. The task pipeline is de-
signed so that (ideally) all workers constantly have work
units to process, thus maximizing utilization of disk I/O,
network bandwidth, and CPU processing power.

2.1 Phase Zero: Sampling

For the ‘Daytona’ variant of GraySort, the input data
does not necessarily follow a uniform key distribution.
To prevent our system from becoming unbalanced, we
need to construct a hash function that will ensure that tu-
ples read from the input are spread across the nodes in
our system evenly. Thus before we can begin sorting,
we have to sample the input data to construct an empir-
ical hash function based on that input data. The stages
that make up phase zero are interconnected as shown in
Figure 1.

We chose to use the well known approach of reading
a subset of the input data (sampled evenly throughout
the entire input) to determine this distribution. This pro-
cess works as follows. The input data is spread across
N nodes. At the start of phase zero, each node opens
its input file and reads some number of 80MB buffers’
worth of data from each file. The number of buffers used
depends on the amount of data sampled from each disk;
for our experiments, we chose to sample at least 1 GB
of data from each node, which means that we read two
buffers from each disk. The keys of the tuples in these
buffers are then summarized by recording their values in
a fixed-depth, fixed-fanout full partition trie.

We choose a partition trie with a depth of three and
a fanout of 256. Every path from the root to a non-root
node in the partition trie represents a possible key value;
for example, the key whose first three bytes are 234, 119,
and 6 would correspond to the node that is the 6th child
of the 119th child of the 234th child of the root. Ev-
ery node in the trie maintains a sample count indicating
how many tuples were recorded with keys equal to that
node’s key. Keys that are less than three bytes long will
be recorded as samples in interior nodes of the trie; keys
that are three bytes long or longer will be recorded at the
trie’s leaves.

Each reader records its sample values in a separate
partition trie. Partition tries from multiple readers are
merged together into a single trie. Tries are merged
together simply by adding their sample counts at each
node.

Once a node’s partition tries have been merged into a
single trie, that trie is sent to a single designated node,
called the coordinator. The coordinator merges the parti-
tion tries from each node together into a single partition
trie, and then uses this combined partition trie (which
contains a summary of sampling information across all
nodes) to figure out how to split the key space across
partitions such that each node receives a roughly equal
division of the input data set.

To do this, the coordinator determines a target partition
size, which it calculates as the total number of samples
divided by the total number of partitions. The total num-
ber of partitions is equal to the number of logical disks
per physical disk multiplied by the number of physical
disks in the cluster.

Once it has computed the target partition size, the co-
ordinator does a pre-order traversal of the trie. As it does
this traversal, it keeps track of the current partition and
the number of samples allocated to that partition so far.

2



Input Disk Network

Reader
8

Sampler
8

Intra-Node 
Merger 1

Sender
1

Receiver
1

Inter-Node 
Merger 8

Meta-Merger
1

Partition 
Calculator 1

NFS 
Filesystem

Producer 
Buffer 
Pool

Partition 
Trie 
Pool

Coordinator 
Partition 
Trie Pool 18

Figure 1: Architecture pipeline for phase Zero

Reader
8

Node
Distributor

3
Sender

1
Receiver

1

LogicalDisk
Distributor

1
Coalescer

8
Writer

8

Input
 Disk

8

Producer
Buffer
Pool

Sender
Node
Buffer
Pool

Network

Receiver
Node
Buffer
Pool

LD 
Buffer 
Pool

Writer
Buffer
Pool

Intermediate 
Disk

8

Figure 2: Architecture pipeline for phase one

At each node, it sets that node’s partition to the current
partition and adds that node’s sample count to the total
number of samples seen so far. If the number of samples
seen so far meets or exceeds the target partition size, the
current partition is incremented and the number of sam-
ples seen is reset.

We found in practice that this greedy allocation of
nodes to partitions could potentially starve later parti-
tions of samples if many previous partitions’ sample
counts slightly exceeded the target sample count, hence
taking more than their fair share of samples. To mitigate
this problem, we slightly adjusted the above algorithm
to re-adjust the target partition size based on how much
“slack” the previous partition had. For example, if the
target partition size was 10 and the number of samples
greedily allocated to it was 12, the target size of the next
partition is set to 8. While this introduces minor imbal-
ances in sample allocation, we found that this produces
extremely uniform partitions in practice without starving
partitions of tuples.

Once the coordinator has computed the partition as-
signments for each node in the trie, it writes the trie as a
file on an NFS filesystem shared by all the nodes. At the
start of phase one (described below), each node will read
this trie from NFS and use it to drive its hash function.
The trie is used by the hash function by simply travers-
ing the trie based on the first three bytes of the key and
returning the partition number at the appropriate node.

In practice, phase zero takes between 15 and 30 sec-
onds to execute at scale.

2.2 Phase One: Distribute
The goal of TritonSort’s first phase is to read all tuples
from the input disks and transfer each tuple to the appro-
priate intermediate logical disk. The stages that make up
phase one are logically connected to each other as shown
in Figure 2. Each stage is responsible for a subset of the
overall task as follows:

Reader: reads from an input file into a collection of
80 MB in-memory producer buffers. When a producer
buffer becomes full, pass it to the next stage. There is
one reader for each input disk.

Node Distributor: scans through a producer buffer,
hashing each of its tuples to determine that tuple’s desti-
nation logical disk. For Indy sort, we use a uniform hash
function, and for Daytona sort, we the empirical hash
function determined in phase zero. Each tuple is copied
into an in-memory node buffer appropriate to its desti-
nation (one per destination host). When a node buffer
becomes full, it is passed to the sender phase to be trans-
mitted over the network.

Sender: transmit a node buffer across the network to
the appropriate destination. There is a single Send stage
that operates in single-threaded mode. Internal to the
Send stage is a set of full or partially full node buffers.
The Send stage opens a connection to each destination
host at the beginning of phase one, thus there are N − 1
sockets per sender for a system with N nodes (a socket
is not opened to localhost, rather buffers are simply for-
warded to the downstream stages of phase one directly).
The Sender stage proceeds in a loop, visiting each node
buffer and sending as much data as possible with a non-
blocking send operation. Note that since data is stream-

3



ing to all of the downstream nodes, the send stage does
not rely on select() or epoll(), since it is expected
that during normal operation all sockets are active.

Connector: establishes connections with remote
senders. This stage initializes each of the sockets and
is called at the start of phase one.

Receiver: receives node buffers from each source
host. There are a set of partially full node buffers, one
per source. The receiver loops across those buffers, call-
ing a non-blocking recv() call. When a node buffer
becomes full, it is passed to the next stage.

LD Distributor: distributes the tuples in a node buffer
to the appropriate logical disk. It starts by receiving a
node buffer from the receiver stage. It scans this node
buffer to extract tuples, and then it hashes the keys in
those tuples to assign each tuple to one of several logical
disk buffers, or LDBuffers. In our system each physical
disk has approximately 300 logical disks, and so a tuple
can be hashed to one of approximately 2400 logical disk
buffers (the exact number is a configuration parameter).

When a particular LDBuffer gets full, it is added to
the back of a linked list, or chain, of LDBuffers. There
is one chain for each logical disk on a particular node.
Periodically, the LD distributor examines each chain and
attempts to send the longest chain it can to the next stage.
Details on this stage’s construction and its interplay with
the writer are discussed in [2].

Coalescer: concatenates the tuples from a chain of LD
buffers into a single in-memory buffer. The size of this
buffer is configurable and determines the maximum size
of the chain that can be emitted by the LD distributor.

Writer: repeatedly write data from the most full cir-
cular buffer to its corresponding logical disk. There is
one writer per physical intermediate disk.

2.2.1 Phase One Daytona

We achieve generality in our ‘Daytona’ variant of Triton-
Sort by implementing MapReduce on top of the core Tri-
tonSort architecture. Thus Daytona phase one and phase
two are slightly different from their Indy counterparts. In
particular, phase one encompasses both tuple distribution
and the map() function. We have one new stage.

Mapper: transforms tuples by applying a user-written
map() function. The mapper takes the place of the node
distributor in Daytona TritonSort. It copies transformed
tuples into sender buffers and uses the empirical hash
function to determine which node will receive the trans-
formed tuples. GraySort uses an identity map() func-
tion that leaves tuples unchanged.

Intermediate
Disk

Reader

Phase2
Buffer
Pool

Sorter Writer Output
Disk

8 8 4 8 8

Figure 3: Architecture pipeline for phase two

2.3 Phase Two: Sort

Once each tuple has been transferred to its appropriate
logical disk, each logical disk must be sorted. The sort-
ing of logical disks is done with three tasks:

Phase Two Reader: reads an entire logical disk into
an 850MB in-memory buffer. There is one phase two
reader per intermediate disk.

Sorter: sorts the tuples in a buffer using a variant of
radix sort. The number of sorters is variable, and is cur-
rently set to half the number of phase two readers.

Phase Two Writer: writes a buffer to a file on the
appropriate input disk. There is one phase two writer per
input disk.

2.3.1 Phase Two Daytona

Phase two of our Daytona variant implements both sort-
ing and the reduce() function. This version of phase
two has a larger memory requirement than the Indy ver-
sion, and so we can only afford about 700MB per logical
disk. Consequently, we are forced to use about 100 more
logical disks per physical disk than in Indy TritonSort.
We have one new stage.

Reducer: combines all values for a given key by ap-
plying a user-written reduce() function. The reducer
operates between the sorter and the writer, so its input
buffer is guaranteed to be sorted by key. All values for a
given key can be read sequentially from the in-memory
buffer. GraySort uses an identity reduce() function
that emits all values unchanged for any given key.

2.4 Daytona Tuples

The Daytona specification mandates that we must be able
to handle tuples of variable size. We follow this guideline
by tagging each tuple with metadata specifying its key
and value lengths. Any operation on individual tuples
must take this meta data into consideration, and this can
cause subtle changes to our processing pipeline. For ex-
ample, our Daytona implementation of radix sort copies
sorted tuples to a spare output buffer. We cannot sim-
ply swap out-of-order tuples if we cannot assume two

4



tuples are the same length. These spare buffers account
for most of the memory differences between the Indy and
Daytona variants of phase two.

3 MinuteSort Architecture

For the MinuteSort benchmark, we modify our architec-
ture as follows. In the first phase, as before, we read the
input data and spray tuples across machines based on the
logical disk to which the tuple maps. However, logical
disks are maintained in memory instead of being written
to disk immediately.

In phase two (once all input tuples have been trans-
ferred to their appropriate logical disks), the in-memory
logical disks are directly passed to workers that sort
them. These sorters in turn pass sorted logical disks to
writers to be written to disk. Hence, logical disks are
still written to disk but are not written until after they
have been sorted.

4 Environment

Our testbed consisted of 52 HP ProLiant DL380 G6
servers, although we use different numbers of servers
for different benchmarks. Each server has two quad-
core Intel Xeon E5520 processors, clocked at 2.27 GHz,
and 24 GB of RAM. Each server also hosts 16 2.5-inch
500 GB, 7200 RPM SATA hard drives. 52 of the ma-
chines use HP Seagate MM0500EANCR drives that are
enterprise-grade and therefore have a much higher reli-
ability. The remaining machines use Seagate Momentus
7200.4 drives, which are consumer-grade.

Each machine is equipped with a 10G-PCIE2-8B2-2S
NIC Myricom 10Gbps network card. All the machines in
our testbed are inter-connected via a Cisco Nexus 5096
switch, which provides 10 Gbps connectivity between all
pairs.

All machines are running version 2.6.35.1 of the Linux
operating system. Each hard drive is configured with a
single XFS partition. Each XFS partition is configured
with a single allocation group to prevent file fragmenta-
tion across allocation groups, and is mounted with the
noatime, attr2, nobarrier, and noquota flags
set. Each server has two HP P410 drive controllers with
512MB on-board cache. The servers run Linux 2.6.35.1,
and our implementation of TritonSort is written in C++.

5 Experiment Setup

TritonSort is bootstrapped by a pair of shell scripts. The
user executes a central shell script (called the coordina-
tor) that is responsible for starting TritonSort on all clus-
ter nodes. This script is assumed to run on the same sub-

net as the cluster nodes. The coordinator starts a script
called a monitor as a daemon on each cluster node. After
a monitor finishes initializing its internal state, it opens
a TCP pipe to the coordinator and announces that the
node it is monitoring is ready to run. The monitor then
waits for a UDP broadcast packet. Once the coordinator
has established connections to all monitors and all mon-
itors are ready, the coordinator sends a UDP broadcast
indicating that the experiment is ready to begin. Once a
monitor receives the UDP broadcast, it starts the Triton-
Sort instance for its node immediately.

Each monitor checks the status of its TritonSort in-
stance every tenth of a second. While its TritonSort in-
stance is still running, the monitor transmits a keep-alive
message to the coordinator via its established TCP pipe
every second. Once the TritonSort instance has finished,
the monitor notifies the coordinator that it is done. The
coordinator exits when it has received notifications from
each monitor in this way.

The coordinator and monitor scripts are not strictly
part of TritonSort, and were built primarily for exper-
imental convenience. For our MinuteSort runs, where
strict timing is essential, we measure the elapsed time of
the sort as the time between when the coordinator sends
the UDP broadcast to start the experiment and when the
last monitor reports to the coordinator that it is finished.
This ensures that the measured time encompasses the
starting up and shutting down of all TritonSort instances
(since the monitor starts TritonSort after receiving the
UDP broadcast and TritonSort stops before the monitor
notifies the coordinator that it is finished).

For GraySort, we choose to underestimate our perfor-
mance by a few seconds to make logging simple and
measure the time between when the coordinator starts
and when the coordinator exits. This ensures that the to-
tal elapsed time begins slightly before the first TritonSort
process starts and ends slightly after the last TritonSort
process exits. In practice, this overestimate is less than
30 seconds.

6 JouleSort Measurement Methodology

For the 100TB Daytona JouleSort benchmark, we used
52 nodes and one experiment head node, all of which are
HP DL380G6s.

When measuring the energy consumed by the testbed
during the run, we measure the combined energy used by
the experiment nodes, the experiment head node, and the
10Gbps switch that connects the machines together.

6.1 Measuring the switch
To measure the energy used by our Cisco 5596UP data-
center switch, we plugged the switch into an Avocent PM

5



3000V PDU during our sorting runs. The PDU tracks
maximum, minimum and “present” power draw on a per-
port basis. To determine the total amount of energy used
by the switch throughout the run, we multiplied the max-
imum power draw from the switch (in watts) as measured
by the PDU by the duration of the run in seconds. This
overestimates the energy used by the switch, but makes
our calculations easier. The power drawn by the switch
measured in this way is 566 watts.

6.2 Measuring the nodes

We measured the power consumed by the cluster ma-
chines (both experimental nodes and head node) using
two different power meters. The first meter is available
on each machine, but does not meet the accuracy stan-
dards required by the benchmark’s guidelines. The sec-
ond can only be attached to one machine at a time, but
meets the required accuracy standards. As we will show
in later sections, the two meters’ power measurements
are very similar. We describe each meter and the method-
ology for measuring power from it below.

One danger when measuring power on many machines
is that the clocks on those machines may become out of
sync and cause the aggregate power measurements from
multiple nodes (that should be correlated by time but
aren’t) to be inaccurate. To prevent this from being a
problem, we issue all power meter queries from a single
machine and timestamp the power meter measurements
when they are received. Further, we issue the measure-
ments from the experiment head node so that the times-
tamps recorded when the sort starts and stops (see above)
are taken from the same clock as the timestamps for the
power measurements.

All power measurements are performed by simple
Python scripts. The content of the script varies depend-
ing on the power monitoring system being queried. In
cases where multiple machines are to be monitored at
once, the script spawns a thread per monitored machine
and each thread runs independently. We start the power
monitor scripts manually several minutes before starting
the sort run to allow them to “warm up” and make sure
everything is working properly, and stop them manually
several minutes after the sort run ends. The scripts dump
power measurements to a file as they run, and these files
are analyzed after the run to determine total energy us-
age.

6.2.1 HP ILO Power Meters

The first meter we used was the power measurement sub-
system of HP’s Integrated Lights-Out (ILO) management
tool. Each of our DL380G6 machines comes equipped
with an on-board service processor running version 1.82

of ILO2.
We query the ILO power meter using the Remote

Board Insight Command Language (RIBCL). RIBCL al-
lows operators to issue commands to ILO by sending
an XML document to the ILO system over an SSL-
encrypted TCP session and receive an XML response.
The power monitoring script repeatedly opens an SSL
connection to the ILO system, issues a power monitor-
ing command, retrieves a response, and closes the con-
nection.

RIBCL’s power measurement reports four numbers:
maximum, minimum and average power over the past 24
hours, and “present” power, which measures the number
of watts for the most recent 0.5 second sample. We use
present power as our power measurement for each sam-
ple.

Unfortunately, RIBCL requires that only a single
XML document “command” be sent per connection. We
found in practice that we could not reliably issue RIBCL
commands to the ILO system more than once every 15
seconds because the on-board service processor is quite
slow and the high overhead of establishing an SSL ses-
sion must be incurred once per measurement.

6.2.2 WattsUp? Power Meter

To provide once-per-second measurements of our ma-
chines’ power consumption, we attached a power meter
that could provide once-per-second power measurements
to a representative node in the cluster. The particular me-
ter that we used was the IEC 320 universal outlet (UO)
version of the WattsUp? Pro/ES/.Net power monitor. We
refer to this meter as the WattsUp meter for brevity for
the remainder of the text. We chose this meter because of
its ready availability and known reliability; several other
research projects at UCSD have used this meter to mea-
sure server power successfully.

The WattsUp meter has a simple serial-over-USB in-
terface. The client opens a TCP connection to the meter
and sends the meter a request for data and a data col-
lection interval. The meter responds by sending the re-
quested data once per interval until it’s told to stop or
the client closes the TCP connection. Our power mea-
surement script sends the meter a request for power in-
formation at an interval of one second. The script then
receives and parses the response (by issuing a blocking
read call to the socket, which consistently unblocks with
a new response once per second) and appends the parsed
response to a file.

During the first four runs of each benchmark type, we
used the WattsUp meter to measure the power on a ran-
dom experiment node. On the fifth run, we used it to
measure the experimental head node. Since the head
node is not doing anything particularly intensive (mon-

6



0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (s)

0

50

100

150

200

250

300

350
Po

w
er

 (W
at

ts
)

Meter Sample
ILO Min

ILO Max
ILO Sample (shifted -300s)

(a) Raw WattsUp meter data

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (s)

150

200

250

300

350

Po
w

er
 (W

at
ts

)

Meter Sample (30s medians)
ILO Min

ILO Max
ILO Sample (shifted -300s)

(b) Median of each 30 seconds of WattsUp data

Figure 4: Power consumed by a representative node dur-
ing a Daytona JouleSort run

itoring power on each machine and recording experi-
ment time), we found that its power consumption was
relatively low. Through measurements on both types of
power meters, we found that the average draw for the
head node was 134 watts with a deviation of about 2
watts. Because of this, we assume that the experiment
head node’s power draw is a constant 134 watts for the
duration of the sort run.

6.2.3 Resolving Discrepancies Between Meters

We found that the power measured by the ILO system
lags that measured by the WattsUp meter by exactly five
minutes. Figure 4 shows both the maximum, minimum
and “present” power reported by the ILO and the power
reported by the WattsUp meter during a Daytona Joule-
Sort run, with the ILO measurements appropriately time-
shifted. When calculating power with the ILO meters,
we time-shifted all samples by 5 minutes to compen-
sate for this observation and allowed the power collec-
tion scripts to run for several minutes after the sort run
finished to collect sufficient additional samples to cover
the entirety of the sort run.

In these runs you can see that there is a sharp reduction
in power usage about halfway through the sort run. This
is a result of the barrier between phases one and two. Due
to the natural variation in node performance, some nodes
finish phase one earlier than others, and so their power
usage is reduced. However, none of the nodes can start
phase two until all nodes are done with phase one, which
results in the gap visible in Figure 4.

The WattsUp meter’s data is more variable during
phase two; we suspect that this is due to the fact that
the CPU is far more active during phase two than it is
during the other phases. However, if we look at the me-
dian power reported by the WattsUp meter during each
30 second interval throughout the run, we notice that the
WattsUp meter’s measurements track the ILO’s measure-
ments quite closely.

6.3 Calculating Energy

To estimate energy used by the experiment head node
and the switch, we multiply their estimated instantaneous
power draws (134 watts and 566 watts, respectively) by
the duration of the sort run in seconds. Call the energy
used by the head node and the switch Ehead and Eswitch

respectively.
All power measurements reported by our meters are

reported in watts. To obtain an energy measurement from
this collection of instantaneous power measurements, we
start by filtering the set of measurements so that we only
consider those measurements that were taken on or after
the sort run’s start timestamp and on or before the sort
run’s end timestamp. The subsequent power calculation
varies depending on the meter being used. We refer to
the energy used by the experiment nodes as Enodes.

When calculating power based on measurements gath-
ered from the ILO meters, we start by sorting measure-
ments in ascending order by timestamp. We then com-
pute the total energy for a node in the following way.
For each measurement (Wi, Ti), we consider the previ-
ous measurement (Wi−1, Ti−1) and add Wi∗(Ti−Ti−1)
to the total energy. In cases where the measurement abuts
the start or end of the run, we use the start and end times-
tamps of the sort run as Ti and Ti−1 as appropriate to
“fill in the gaps” at the beginning and end of the run. We
compute the total energy for each node in this way and
sum the energy from each node to compute Enodes.

When using the WattsUp meter, we have once-per-
second measurements and can produce power estimates
in line with the sort benchmark guidelines. To do this,
we compute that average (mean) power for the represen-
tative node. For the first four trials (where an experimen-
tal node is being measured), this data is derived by taking
the average of all measurements taken from the WattsUp
meter during the sort run. For the fifth trial (where the

7



Benchmark Trial Avg. Server Power
Indy 1 287 Watts
Indy 2 285 Watts
Indy 3 309 Watts
Indy 4 297 Watts

Daytona 1 290 Watts
Daytona 2 285 Watts
Daytona 3 293 Watts
Daytona 4 306 Watts

Table 3: Average power consumed by a node through-
out a sort benchmark run for the first four trials of our
JouleSort experiments

head node is being measured), the average power is as-
sumed to be the average of the previous four trials.

We believe that this assumption is reasonable because
the average power consumed by a node does not vary
much; we provide the average power drawn by a node
in the first four trials in Table 3. The standard deviation
for the first four measurements is 11 watts for Indy and 9
watts for Daytona, 3.7% and 3.0% of the mean, respec-
tively.

Once we have computed the average power for a rep-
resentative node, we multiply that average power by the
length of the run in seconds to yield the total energy con-
sumption for a node, and multiply that number by the
number of nodes (52 in our experiments) to yield Enodes.

Once we have computed Enodes, Ehead and Eswitch,
we compute total energy Etot as Enodes + Ehead +
Eswitch.

We present the results of the measurements obtained
in this way in Section 7.1.

7 Evaluation

For all reported results, we calculated input and output
checksums and verified that the input and the output
checksums matched. We never encountered any dupli-
cates in any of our data sets.

Our results are summarized in Table 1.

7.1 JouleSort
We ran five trials each of 100TB Indy and Daytona Joule-
Sort. The raw energy measurements for these trials are
given in Table 4 and metadata about the total energy mea-
surements is given in Table 5.

7.1.1 Deriving Standard Deviation and Standard
Error

When calculating standard deviation and standard error
in Table 5, we assume that the WattsUp meters are ac-

curate to ±2% and the ILO meters are accurate to ±10%.
We were unable to obtain any data about the accuracy
of Avocent’s PDUs, and so we assume somewhat pes-
simistically that the PDUs are accurate to ±5%.

We obtained standard deviation in the following way.
First, we derived the mean power drawn by each server,
the head node, and the switch. When using the WattsUp
meter’s measurements, we simply used the mean of all
power measurements logged by the meter. When us-
ing the ILO meter’s measurements, we derived the mean
power draw for a node by dividing the total amount of
energy consumed by the node by the trial’s runtime. Call
the mean power produced by server X PNX

, the mean
power produced by the head node PH and the mean
power produced by the switch PS .

We then multiplied each mean power value by its
respective meter’s accuracy to yield the uncertainty
U(PNX

), U(PH) and U(PS) of each power measure-
ment. We then multiplied these uncertainties by the trial
runtime to yield the uncertainty U(ENX

), U(EH) and
U(ES) of each energy measurement. Once these values
were derived, we used error propagation to yield the to-
tal energy measurement uncertainty for the trial using the
following formula:

U(Etrial) =

√√√√(
51∑

X=0

U(ENX
)2) + U(EH)2 + U(ES)2

Once U(Etrial) was calculated for each trial, we per-
formed a further round of error propagation across trials
to yield total uncertainty, i.e. standard deviation.

U(Etotal) =

√√√√ 5∑
T=1

U(EtrialT )2

Standard error is derived by dividing standard devia-
tion by

√
5.

Since the measurements derived by the WattsUp meter
comply with the guidelines for the sort benchmark, we
report those numbers. Indy TritonSort sorted an average
of 9,704 records per Joule. Daytona TritonSort sorted an
average of 7,595 records per Joule.

7.2 Minute Sort
We ran TritonSort in its MinuteSort configuration on 66
nodes with 20.5 GB per node for a total of 1353 GB of
data. We performed 15 consecutive trials. For these tri-
als, TritonSort’s median elapsed time was 59.2 seconds,
with a maximum time of 61.7 seconds, a minimum time
of 57.7 seconds, and an average time of 59.2 seconds.
All times were rounded to the nearest tenth of a second.
Only 3 of the 15 consecutive trials had completion times
longer than 60 seconds.

8



Energy (Joules) Records per Joule
Benchmark Trial WattsUp ILO WattsUp ILO

Indy 1 103,180,896 108,054,648 9,692 9,255
Indy 2 99,312,480 105,333,939 10,069 9,494
Indy 3 109,495,040 105,425,639 9,133 9,485
Indy 4 102,724,272 105,523,992 9,735 9,477
Indy 5 101,108,112 103,656,684 9,890 9,647

Daytona 1 129,774,720 136,098,976 7,706 7,348
Daytona 2 127,434,720 135,998,793 7,847 7,353
Daytona 3 132,077,568 136,851,456 7,571 7,307
Daytona 4 137,082,224 136,259,721 7,295 7,339
Daytona 5 132,380,352 135,332,800 7,554 7,389

Table 4: Total energy measured for each 100TB trial by both WattsUp and ILO meters

Energy (Joules)
Benchmark Meter Median Mean (Average) Std. Dev. Std. Err

Indy ILO 105,425,639 105,598,980 3,170,018 1,417,675
Indy WattsUp 102,724,272 103,164,160 736,610 329,422

Daytona ILO 136,098,976 136,108,349 4,086,316 1,827,456
Daytona WattsUp 132,077,568 131,749,917 941,356 420,987

Table 5: Statistics for the energy measurements presented in Table 4

8 Acknowledgements

We’d like to thank Harsha V. Madhyastha, Radhika Ni-
ranjan Mysore, and Alexander Pucher for their contribu-
tions on the original TritonSort codebase and entry into
the 2010 sortbenchmark.org competition.

References

[1] A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. Communi-
cations of the ACM, 1988.

[2] Alexander Rasmussen, George Porter, Michael Con-
ley, Harsha V. Madhyastha, Radhika Niranjan
Mysore, Alexander Pucher, and Amin Vahdat. Tri-
tonSort: A Balanced, Large-Scale Sorting System.
In 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), March 2011.

9


