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Abstract 

In November 2004, the SAN Cluster Sort program (SCS) set 

new records for the Indy versions of the Minute and 

TeraByte Sorts. SCS ran on a cluster of 40 dual-processor 

Itanium2 nodes on the show floor at the Supercomputing 

2004 conference (SC04), performing its data accesses to 

240 SAN-attached 8+P RAID5 arrays managed by the IBM 

General Parallel File System. This hardware and software 

combination achieved peak data transfer rates of over 

14GB/sec, while sorting a 125GB input file in 58.7 seconds, 

and a 1TB input file in 7 minutes, 17 seconds. 

Introduction 

In 1985, an article in Datamation magazine proposed that 

sorting one million records of 100 bytes each, with random 

10 bytes keys, would be a useful measure of computer 

systems I/O performance [1]. The ground rules of that 

benchmark require that all input must start on disk, all 

output must end on disk, and that the overhead to start the 

program and create the output file must be included in the 

benchmark time. Input and output must use operating 

system files, not raw disk partitions. Constant 

improvements in computer hardware and sort algorithms 

have reduced the time for the Datamation sort from over an 

hour [15] to less than half a second [12]. Several variations 

on the basic theme have evolved over the years. “Minute 

Sort” [3, 8, 11] measures how much can be sorted in one 

minute, while “TeraByte Sort” measures how fast 1TB of 

data can be sorted [8, 9, 16]. Jim Gray is the unofficial 

arbiter and record keeper for sort benchmarks. His web site 

[5] distinguishes between two categories of sort results. 

“Daytona” sorts use commercially available sort programs, 

while “Indy” sorts are programs customized for the 

specifics of the sort benchmark. The SAN Cluster Sort 

program (SCS) described in this paper improves 

substantially upon the best Indy results for the TeraByte 

and Minute Sorts. 

Hardware 

SCS runs on a loosely-coupled cluster of nodes, and uses 

SAN-attached shared disks for its input, output, and work 

files. The specific record-setting runs described here ran on 

a cluster consisting of the following hardware components: 

• 40 dual-processor Intel Itanium2 nodes using the 

SR870BN4 server platform [7]. Each node contains 2 

64-bit Itanium2 processors clocked at 1.3GHz, 4GiB of 

RAM, a single gigabit Ethernet interface, a local SCSI 

disk used by the operating system, and 3 2Gb/sec fibre 

channel host bus adapters. The nodes have enough PCI 

busses so that each fibre channel interface card has its 

own bus. The nodes belong to the San Diego 

Supercomputing Center (SDSC), and were located in 

the SDSC booth at SC04. 

• 60 IBM TotalStorage DS4300 RAID subsystems [6]. 

Each RAID subsystem contains two controllers, each 

with its own fibre channel host interface. Each DS4300 

holds 14 73GB 10000RPM fibre channel disk drives, 

and is connected to two expansion drawers with 14 

additional disks each. The 42 total drives assigned to a 

DS4300 are configured as 4 8+P RAID5 arrays plus 

two hot spares, with the remaining 4 drives used by 

another demonstration at SC04. The 15 racks of RAID 

controllers and their disks were located in the 

Storcloud booth at the conference. 

• 3 Brocade Silkworm 24000 fibre channel switches. 

Each switch contains 128 2Gb/sec fibre channel ports, 

of which 120 are used. Each switch is connected to all 

40 of the Itanium2 nodes through a single fiber each, 

and to both controllers in 1/3 of the RAID subsystems 

with redundant fibers (1/3 * 60 DS4300 * 2 

controllers/DS4300 * 2 fibers/controller = 80 fibers). 

There are no inter-switch links between the fibre 

channel switches. 

• A Force10 model E1200 Ethernet switch. The gigabit 

Ethernet ports of each node are connected to the 

Force10 switch, and from there to the Teragrid 

backbone. During SCS runs, these links carry only 

control traffic; all data movement uses the fibre 

channel SAN.  



In total, the sort cluster contains 160GiB of RAM and 2560 

disk drives (40 internal SCSI + 60*42 external FC). The 

total formatted capacity of the external RAID used by SCS 

is over 140TB (60 DS4300 * 4 arrays/DS4300 * 8 data 

disks/array * 73GB/disk). The aggregate I/O bandwidth of 

the RAID arrays is over 14GB/sec. Figure 1 shows the 

hardware available to SCS at SC04. 

System Software 

The 40 Itanium2 nodes run SUSE LINUX Enterprise Server 

8 (SLES8). This distribution is based on version 2.4 of the 

Linux kernel. 

The IBM General Parallel File System version 2.3 (GPFS) 

[13] manages the 240 RAID arrays as a single mountable 

file system. GPFS uses wide striping to distribute files 

across multiple RAID arrays. This allows all I/O subsystem 

bandwidth to be brought to bear on a single file when 

necessary. GPFS is a true cluster file system; there is no 

central server and therefore no single node that can be 

saturated with data transfer requests. Instead, GPFS 

accesses data directly over the SAN without intermediate 

data transfers. No semantic sacrifices have been made in 

delivering this level of performance; instances of GPFS 

coordinate their activity such that X/Open file semantics are 

preserved. All nodes see the same name space and file 

contents at all times. 

In addition to data transfers, many common control 

functions in GPFS are also distributed in a scalable way. 

For example, when SCS writes its output, many nodes write 

into non-overlapping regions of the same file 

simultaneously, and each of these nodes must be able to 

allocate disk blocks. The GPFS space allocation maps are 

organized in such a way that multiple nodes can 

concurrently allocate space independently of one another, 

preventing space allocation from becoming a bottleneck. 

SCS uses the MPICH [4] implementation of the Message 

Passing Interface (MPI) [14] to coordinate its operation 

across multiple nodes. By using the secure server option of 

MPICH to accelerate program startup, SCS is able to start 

running on all 40 nodes in about 6 seconds, compared to 

about 15 seconds using ssh. This program startup time is 

included in the performance results reported here. 

SAN Cluster Sort Program 

The SCS program is a custom C program containing 

approximately 3300 source lines. Since the total amount of 

main memory available in the cluster is significantly less 

than 1TB, SCS must use temporary files on disk. This 

makes SCS into a two-pass sort; each input record is read 

and written twice, including the traffic to and from the 

temporary files. 

In its first pass, SCS distributes records into slices of 

approximately equal size. A slice consists of records with a 

contiguous range of keys. In the second pass, nodes buffer 

entire slices in memory, sort them, and write sorted slices to 

their correct positions in the output file. The number of 

slices depends on the amount of buffering available in the 

second pass. SCS allocates 768MiB of buffers to each slice. 
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Figure 1.  Sort hardware at SC04. 
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This allows two slices to comfortably fit in memory at 

once, so SCS can overlap the reading of slice n+1 with the 

sorting of slice n during pass 2. A 1TB input file and a 

768MiB buffer size implies 1242 slices. To improve load-

balancing, SCS requires that each node process the same 

number of slices, so the actual number of slices used is 

rounded up to 1280. Due to the random nature of the input, 

slices have approximately, but not exactly, the same 

number of records. In the TeraByte Sort, the difference 

between the sizes of the smallest and largest slices was less 

than 0.3%. 

Figure 2 shows the processing done in the first pass of SCS 

in more detail. There are three threads per node, connected 

by simple producer-consumer queues. Each reader thread 

reads 1MiB chunks of the input file sequentially, starting at 

a file offset that is computed from its node number such 

that all records in the input file are read by exactly one 

node. The distributor thread on each node consumes buffers 

read by the reader thread and moves records into 1MiB 

buffers according to which slice the record belongs. Since 

keys are random binary data, assignment to a slice can be 

done simply by dividing the high-order bits of the key by 

the number of slices. As slice buffers fill, the distributor 

thread queues them to another thread that appends buffers 

to a per-node temporary file in the shared GPFS file system.    

Once every node finishes the first pass, all records from the 

input file have been clustered by slice into blocks in one of 

the per-node temporary files. Except for partial buffers 

flushed at the conclusion of pass 1, all slice blocks are 

aligned on 1MiB boundaries in the temporary files. This 

size matches the GPFS block size and the RAID full stripe 

size, so reading slices back during pass 2 can be done 

efficiently. The order in which slice blocks appear in the 

temporary files depends on the order in which slice buffers 

fill, which is random, but each node remembers in memory 

which slices it wrote at which offsets in its temporary file. 

Between pass 1 and pass 2, nodes exchange this mapping 

information using MPI_AllGather. By the time the second 

pass begins, each node has a complete picture of the layout 

of every temporary file, as well as counts of the number of 

records in each slice. MPI is only used to exchange 

metadata about where blocks of records are located in the 

temporary files; all actual data movement from node to 

node occurs through the temporary files on disk. 

During the second pass of SCS, nodes are responsible for 

non-overlapping ranges of the output file. Independently, 

each node reads entire slices back into memory before 

sorting them. Since the blocks comprising a slice are 

scattered in random 1MiB pieces across all of the per-node 

temporary files, SCS employs multiple parallel threads on 

each node to read the slice blocks in order to improve its 

I/O throughput (see Figure 3). To sort a slice once it has 

been fully buffered, SCS builds an array of <key-prefix, 

record-pointer> pairs and does a radix sort on the high-

order 32 bits of the 10 byte keys. This technique assists in 

maintaining cache locality, and has been described 

elsewhere [2, 10, 16]. The pass 2 sort threads break ties in 

the high-order key bits using bubble sort, then gather 

records into buffers that they queue to a writer thread. 

Using the slice size information gathered from all nodes 

between passes, the writer thread computes where in the 

output file to begin writing each slice. To overlap sorting 

one slice with reading the next slice, the second pass of 

SCS has two sets of reader and sort threads per node, as 

shown in Figure 3. The two sets of threads are synchronized 

to insure that only one slice at a time is read, sorted, or 

written. 

SCS makes use of several other techniques to improve its 

running time: 

• SCS does not create its temporary files until after 

beginning to read and distribute input records. 

• Gathering the temporary file mapping information 

from all nodes can occur before all of the pass 1 
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Figure 3.  SCS pass 2 processing on each node. 
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threads have exited. The locations of the slice buffers 

in the temporary files are known as soon as all buffers 

have been queued to the temporary file writer thread. 

Thus, SCS begins exchanging mapping information 

before the writer threads exit. 

• GPFS employs distributed byte-range locks to insure 

cache consistency for files that are accessed from 

several nodes. Normally, read and write system calls 

implicitly drive the movement of byte-range locks from 

one node to another. To avoid unnecessary overhead, 

SCS explicitly manages these byte-range locks using 

optional GPFS hint calls. Turning off GPFS hints 

increases the running time to sort 125GB by 1.8%, 

based on three runs by each method. 

• SCS destroys its temporary files as soon as the last 

slice has been read by all nodes, in parallel with sorting 

and outputting the final slice. 

SCS contains code to write time-stamped trace records to 

local files at various points in its execution. These traces 

indicate that the techniques above are each responsible for 

no more than 250ms of improvement to the running time, 

except for GPFS hints as noted. 

TeraByte Sort Performance Analysis 

SCS sorted a 1TB input file in 437 seconds using the cluster 

at SC04, improving on the previous record by a factor of 

2.4 [16]. Figure 4 shows the aggregate I/O throughput 

delivered by the GPFS file system across all 40 nodes 

during the record-setting TeraByte Sort run. Figure 5 shows 

CPU usage over the same period, where 100% means that 

all 80 Itanium2 processors in the cluster were completely 

busy. This data was gathered by summing the output of the 

Linux vmstat utility from all nodes. The transition from 

pass 1 to pass 2 at about elapsed time 223 seconds can be 

seen clearly. 

Figure 5. Cluster CPU usage during TeraByte Sort. 
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Figure 4. Aggregate cluster I/O throughput during TeraByte Sort. 



The most striking feature of these graphs is their periodic 

nature. During the first pass, SCS distributes records into 

1280 1MiB buffers, one for each slice. Since the key range 

spanned by each slice is the same, the uniform distribution 

of input keys implies that all of the slice buffers fill up at 

nearly the same time. This leads to bursts of writing every 

few seconds, along with drops in the read rate and CPU 

usage until enough buffers have been cleaned to allow the 

reader and distributor threads to continue. Dividing a 1TB 

file by 1280*40 1MiB buffers yields 18.6, and indeed there 

are 18 large peaks and one smaller peak in the throughput 

graph of pass 1. 

In pass 2, there are 31 peaks in the I/O throughput graph of 

Figure 4, corresponding to the 32 slices sorted by each 

node. The first read peak is wider than the others because it 

includes reading the first two slices. The high and low 

limits of the pass 2 graphs appear to converge towards an 

intermediate value as time advances. This is an artifact of 

how data from the nodes are combined. All nodes do 

approximately the same amount of work at approximately 

the same rate. Initially, their measured performance 

variations are in phase. After running for a while, however, 

the nodes drift out of phase and their aggregate 

performance measures begin to show interference effects, 

attenuating the apparent variation in throughput and CPU 

usage. 

To confirm that the 1TB output file was sorted, a parallel 

validation program read the output and verified that records 

had non-decreasing keys. The program also verified that no 

records were corrupted, using record and file checksums. 

The validation program ran at a sustained rate of over 

14GB/sec, as shown in Figure 6. This rate agrees with what 

was measured independently using raw I/O, establishing 

that GPFS can drive the disks to their throughput limit. 

Minute Sort Performance Analysis 

SCS sorted a 125GB input file in 58.7 seconds, establishing 

a new record for Minute Sort. This file would have fit in the 

aggregate memory of the 40 nodes in the sort cluster. A 

single-pass sort program could have avoided disk I/O to 

temporary files by shipping records by slice directly to 

buffers in their destination nodes. However, as the hardware 

was configured, the fastest way to move data between 

nodes was to write data to disk on the source node and then 

read it on the target. Although a one-pass algorithm would 

have been possible for Minute Sort, its performance would 

have been worse than SCS on the cluster available at SC04. 

Thus, the same two-pass program configured with the same 

buffer sizes was used. Sorting 125GB with SCS is a 1/8 

scale version of sorting 1TB; instead of 1280 slices, there 

are 160. SCS was able to sort 12.5% of a terabyte in 13.4% 

of the time it took to sort the terabyte. The increase is due to 

the fixed 6 second program startup latency. 

Figure 7 shows disk throughput and CPU usage during the 

Figure 7. Minute Sort aggregate I/O throughput and cluster CPU usage. 
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Minute Sort run. Since there are only 160 slices, SCS has 

enough buffers available to smooth out processing during 

its first pass. Unlike the TeraByte Sort run, during Minute 

Sort the reader and distributor threads can continue even 

while the writer threads write a batch of buffers to the 

temporary files. Thus, the throughput graphs during pass 1 

are very smooth, with none of the periodic oscillations 

observed during the TeraByte Sort run. The write 

throughput during pass 1 just looks like a time-shifted copy 

of the read throughput. However, since there are only 4 

slices processed by each node during the second pass, there 

is significant “lumpiness” in that part of the throughput 

graph. Performance of pass 2 would have been somewhat 

better with more and smaller slices, because the 

unoverlapped writing of the last output slice would have 

been shorter.  

Throughout most of pass 1 of Minute Sort, the sort cluster 

drove the I/O subsystem to its limiting throughput of 

14GB/sec. In pass 2, there were intervals where CPU was 

the bottleneck, and other intervals where I/O throughput 

was the limiting resource.  

Discussion 

As always seems to be the case with large sort benchmarks, 

the hardware was available for too brief a time to 

adequately tune the system. In hindsight, making more of 

the 4GiB of RAM on each node available to SCS 

undoubtedly would have smoothed out the performance of 

pass 1 of the TeraByte Sort, and probably would have sped 

it up as well. The Minute Sort run did have adequate 

buffering in pass 1, and Figure 7 shows its smooth I/O 

throughput. Excluding startup latency, pass 1 accounted for 

50% of the running time of the TeraByte Sort, but only 42% 

of the running time of the Minute Sort, suggesting how 

much the running time of TeraByte Sort might have 

improved with more buffering. 

The startup latency of 6 seconds for 40 nodes accounts for 

10% of the time budget of Minute Sort. This is a clear 

opportunity for optimization. Others have built highly-

tuned remote execution services that can start programs in 

mere fractions of a second [12]. Minute Sort could certainly 

benefit from the techniques that were vital to sub-second 

Datamation Sort implementations. 

Pass 2 of SCS is frequently CPU-bound. This shows up 

clearly in Figure 7, and is visible in the detailed per-node 

CPU measurements for the TeraByte Sort, although not in 

the aggregated CPU usage graph of Figure 5 due to the 

interference effects described previously. Part of the reason 

for this is the use of relatively slow (1.3GHz) processors, 

but program structure is also partially to blame. SCS uses 

standard X/Open read and write system calls to interface to 

the file system; in GPFS these by default copy data between 

the buffer in the program’s address space and I/O buffers in 

kernel memory. The use of direct I/O would have 

eliminated these data copies and freed up considerable CPU 

resources. Direct I/O complicates the structure of the SCS 

program due to the requirement to handle records whose 

size does not divide evenly into the file system block size 

and the need to explicitly manage block prefetching and 

write behind. 

SCS set new records in two sorting categories: Indy Minute 

Sort and Indy TeraByte Sort. The time for TeraByte Sort 

was a factor of 2.4 times better than the previous record, set 

six years earlier [16]. This is a compound growth rate of 

only 16% per year, much lower than other growth rates 

typically associated with computers. This reflects more on 

the difficulty of obtaining a large system for running sort 

benchmarks than on any fundamental factor. Also, the new 

TeraByte Sort record used less than one tenth the number of 

nodes of the former record. The SCS Minute Sort record is 

a factor of 3.7 better than the prior record, set just last year 

[11]. Given adequate interconnection bandwidth and 

appropriate software, clusters are probably easier to scale 

than large SMP machines.  

Aside from increasing the node count, the most 

straightforward way to extend the sort records described 

here would be to use a one-pass rather than a two-pass sort 

algorithm. This requires enough cluster memory to buffer 

the entire input file, plus enough interconnection bandwidth 

between nodes so they can transfer slice buffers directly to 

other nodes. Existing technologies such as Infiniband or 10-

gigabit Ethernet are powerful enough to accomplish this; all 

that is required are the resources to build the right cluster 

and the will to run sort benchmarks on it. 
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