
Sorting on a Cluster Attached to a Storage-Area Network

Jim Wyllie

IBM Almaden Research Center

650 Harry Road

San Jose, CA 95120

wyllie@almaden.ibm.com

Abstract

In November 2004, the SAN Cluster Sort program (SCS) set

new records for the Indy versions of the Minute and

TeraByte Sorts. SCS ran on a cluster of 40 dual-processor

Itanium2 nodes on the show floor at the Supercomputing

2004 conference (SC04), performing its data accesses to

240 SAN-attached 8+P RAID5 arrays managed by the IBM

General Parallel File System. This hardware and software

combination achieved peak data transfer rates of over

14GB/sec, while sorting a 125GB input file in 58.7 seconds,

and a 1TB input file in 7 minutes, 17 seconds.

Introduction

In 1985, an article in Datamation magazine proposed that

sorting one million records of 100 bytes each, with random

10 bytes keys, would be a useful measure of computer

systems I/O performance [1]. The ground rules of that

benchmark require that all input must start on disk, all

output must end on disk, and that the overhead to start the

program and create the output file must be included in the

benchmark time. Input and output must use operating

system files, not raw disk partitions. Constant

improvements in computer hardware and sort algorithms

have reduced the time for the Datamation sort from over an

hour [15] to less than half a second [12]. Several variations

on the basic theme have evolved over the years. “Minute

Sort” [3, 8, 11] measures how much can be sorted in one

minute, while “TeraByte Sort” measures how fast 1TB of

data can be sorted [8, 9, 16]. Jim Gray is the unofficial

arbiter and record keeper for sort benchmarks. His web site

[5] distinguishes between two categories of sort results.

“Daytona” sorts use commercially available sort programs,

while “Indy” sorts are programs customized for the

specifics of the sort benchmark. The SAN Cluster Sort

program (SCS) described in this paper improves

substantially upon the best Indy results for the TeraByte

and Minute Sorts.

Hardware

SCS runs on a loosely-coupled cluster of nodes, and uses

SAN-attached shared disks for its input, output, and work

files. The specific record-setting runs described here ran on

a cluster consisting of the following hardware components:

• 40 dual-processor Intel Itanium2 nodes using the

SR870BN4 server platform [7]. Each node contains 2

64-bit Itanium2 processors clocked at 1.3GHz, 4GiB of

RAM, a single gigabit Ethernet interface, a local SCSI

disk used by the operating system, and 3 2Gb/sec fibre

channel host bus adapters. The nodes have enough PCI

busses so that each fibre channel interface card has its

own bus. The nodes belong to the San Diego

Supercomputing Center (SDSC), and were located in

the SDSC booth at SC04.

• 60 IBM TotalStorage DS4300 RAID subsystems [6].

Each RAID subsystem contains two controllers, each

with its own fibre channel host interface. Each DS4300

holds 14 73GB 10000RPM fibre channel disk drives,

and is connected to two expansion drawers with 14

additional disks each. The 42 total drives assigned to a

DS4300 are configured as 4 8+P RAID5 arrays plus

two hot spares, with the remaining 4 drives used by

another demonstration at SC04. The 15 racks of RAID

controllers and their disks were located in the

Storcloud booth at the conference.

• 3 Brocade Silkworm 24000 fibre channel switches.

Each switch contains 128 2Gb/sec fibre channel ports,

of which 120 are used. Each switch is connected to all

40 of the Itanium2 nodes through a single fiber each,

and to both controllers in 1/3 of the RAID subsystems

with redundant fibers (1/3 * 60 DS4300 * 2

controllers/DS4300 * 2 fibers/controller = 80 fibers).

There are no inter-switch links between the fibre

channel switches.

• A Force10 model E1200 Ethernet switch. The gigabit

Ethernet ports of each node are connected to the

Force10 switch, and from there to the Teragrid

backbone. During SCS runs, these links carry only

control traffic; all data movement uses the fibre

channel SAN.

In total, the sort cluster contains 160GiB of RAM and 2560

disk drives (40 internal SCSI + 60*42 external FC). The

total formatted capacity of the external RAID used by SCS

is over 140TB (60 DS4300 * 4 arrays/DS4300 * 8 data

disks/array * 73GB/disk). The aggregate I/O bandwidth of

the RAID arrays is over 14GB/sec. Figure 1 shows the

hardware available to SCS at SC04.

System Software

The 40 Itanium2 nodes run SUSE LINUX Enterprise Server

8 (SLES8). This distribution is based on version 2.4 of the

Linux kernel.

The IBM General Parallel File System version 2.3 (GPFS)

[13] manages the 240 RAID arrays as a single mountable

file system. GPFS uses wide striping to distribute files

across multiple RAID arrays. This allows all I/O subsystem

bandwidth to be brought to bear on a single file when

necessary. GPFS is a true cluster file system; there is no

central server and therefore no single node that can be

saturated with data transfer requests. Instead, GPFS

accesses data directly over the SAN without intermediate

data transfers. No semantic sacrifices have been made in

delivering this level of performance; instances of GPFS

coordinate their activity such that X/Open file semantics are

preserved. All nodes see the same name space and file

contents at all times.

In addition to data transfers, many common control

functions in GPFS are also distributed in a scalable way.

For example, when SCS writes its output, many nodes write

into non-overlapping regions of the same file

simultaneously, and each of these nodes must be able to

allocate disk blocks. The GPFS space allocation maps are

organized in such a way that multiple nodes can

concurrently allocate space independently of one another,

preventing space allocation from becoming a bottleneck.

SCS uses the MPICH [4] implementation of the Message

Passing Interface (MPI) [14] to coordinate its operation

across multiple nodes. By using the secure server option of

MPICH to accelerate program startup, SCS is able to start

running on all 40 nodes in about 6 seconds, compared to

about 15 seconds using ssh. This program startup time is

included in the performance results reported here.

SAN Cluster Sort Program

The SCS program is a custom C program containing

approximately 3300 source lines. Since the total amount of

main memory available in the cluster is significantly less

than 1TB, SCS must use temporary files on disk. This

makes SCS into a two-pass sort; each input record is read

and written twice, including the traffic to and from the

temporary files.

In its first pass, SCS distributes records into slices of

approximately equal size. A slice consists of records with a

contiguous range of keys. In the second pass, nodes buffer

entire slices in memory, sort them, and write sorted slices to

their correct positions in the output file. The number of

slices depends on the amount of buffering available in the

second pass. SCS allocates 768MiB of buffers to each slice.

Node 1 Node 2 Node 40

FC SW 3 FC SW 2 FC SW 1

…

40 FC links

80 FC links

 … R40 R21 … R20 R1 … R60 R41

240 8+p arrays

Figure 1. Sort hardware at SC04.

Figure 2. SCS pass 1 processing on each node.

1280 slice buffers

Temp file Input file

Reader

thread

Distributor

thread

Temp file

writer thread
.

.

.

This allows two slices to comfortably fit in memory at

once, so SCS can overlap the reading of slice n+1 with the

sorting of slice n during pass 2. A 1TB input file and a

768MiB buffer size implies 1242 slices. To improve load-

balancing, SCS requires that each node process the same

number of slices, so the actual number of slices used is

rounded up to 1280. Due to the random nature of the input,

slices have approximately, but not exactly, the same

number of records. In the TeraByte Sort, the difference

between the sizes of the smallest and largest slices was less

than 0.3%.

Figure 2 shows the processing done in the first pass of SCS

in more detail. There are three threads per node, connected

by simple producer-consumer queues. Each reader thread

reads 1MiB chunks of the input file sequentially, starting at

a file offset that is computed from its node number such

that all records in the input file are read by exactly one

node. The distributor thread on each node consumes buffers

read by the reader thread and moves records into 1MiB

buffers according to which slice the record belongs. Since

keys are random binary data, assignment to a slice can be

done simply by dividing the high-order bits of the key by

the number of slices. As slice buffers fill, the distributor

thread queues them to another thread that appends buffers

to a per-node temporary file in the shared GPFS file system.

Once every node finishes the first pass, all records from the

input file have been clustered by slice into blocks in one of

the per-node temporary files. Except for partial buffers

flushed at the conclusion of pass 1, all slice blocks are

aligned on 1MiB boundaries in the temporary files. This

size matches the GPFS block size and the RAID full stripe

size, so reading slices back during pass 2 can be done

efficiently. The order in which slice blocks appear in the

temporary files depends on the order in which slice buffers

fill, which is random, but each node remembers in memory

which slices it wrote at which offsets in its temporary file.

Between pass 1 and pass 2, nodes exchange this mapping

information using MPI_AllGather. By the time the second

pass begins, each node has a complete picture of the layout

of every temporary file, as well as counts of the number of

records in each slice. MPI is only used to exchange

metadata about where blocks of records are located in the

temporary files; all actual data movement from node to

node occurs through the temporary files on disk.

During the second pass of SCS, nodes are responsible for

non-overlapping ranges of the output file. Independently,

each node reads entire slices back into memory before

sorting them. Since the blocks comprising a slice are

scattered in random 1MiB pieces across all of the per-node

temporary files, SCS employs multiple parallel threads on

each node to read the slice blocks in order to improve its

I/O throughput (see Figure 3). To sort a slice once it has

been fully buffered, SCS builds an array of <key-prefix,

record-pointer> pairs and does a radix sort on the high-

order 32 bits of the 10 byte keys. This technique assists in

maintaining cache locality, and has been described

elsewhere [2, 10, 16]. The pass 2 sort threads break ties in

the high-order key bits using bubble sort, then gather

records into buffers that they queue to a writer thread.

Using the slice size information gathered from all nodes

between passes, the writer thread computes where in the

output file to begin writing each slice. To overlap sorting

one slice with reading the next slice, the second pass of

SCS has two sets of reader and sort threads per node, as

shown in Figure 3. The two sets of threads are synchronized

to insure that only one slice at a time is read, sorted, or

written.

SCS makes use of several other techniques to improve its

running time:

• SCS does not create its temporary files until after

beginning to read and distribute input records.

• Gathering the temporary file mapping information

from all nodes can occur before all of the pass 1

.

.

.

Slice buffers

Figure 3. SCS pass 2 processing on each node.

Output file

Reader

thread
Odd slice

reader threads

Odd slice

sort thread

Temp files

Writer

thread

Reader

thread
Even slice

reader threads

Even slice

sort thread

threads have exited. The locations of the slice buffers

in the temporary files are known as soon as all buffers

have been queued to the temporary file writer thread.

Thus, SCS begins exchanging mapping information

before the writer threads exit.

• GPFS employs distributed byte-range locks to insure

cache consistency for files that are accessed from

several nodes. Normally, read and write system calls

implicitly drive the movement of byte-range locks from

one node to another. To avoid unnecessary overhead,

SCS explicitly manages these byte-range locks using

optional GPFS hint calls. Turning off GPFS hints

increases the running time to sort 125GB by 1.8%,

based on three runs by each method.

• SCS destroys its temporary files as soon as the last

slice has been read by all nodes, in parallel with sorting

and outputting the final slice.

SCS contains code to write time-stamped trace records to

local files at various points in its execution. These traces

indicate that the techniques above are each responsible for

no more than 250ms of improvement to the running time,

except for GPFS hints as noted.

TeraByte Sort Performance Analysis

SCS sorted a 1TB input file in 437 seconds using the cluster

at SC04, improving on the previous record by a factor of

2.4 [16]. Figure 4 shows the aggregate I/O throughput

delivered by the GPFS file system across all 40 nodes

during the record-setting TeraByte Sort run. Figure 5 shows

CPU usage over the same period, where 100% means that

all 80 Itanium2 processors in the cluster were completely

busy. This data was gathered by summing the output of the

Linux vmstat utility from all nodes. The transition from

pass 1 to pass 2 at about elapsed time 223 seconds can be

seen clearly.

Figure 5. Cluster CPU usage during TeraByte Sort.

Elapsed time (seconds)

C
P
U
 u
s
a
g
e
 (
p
e
rc
e
n
t)

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450

Elapsed time (seconds)

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350 400 450

Read MB/sec

Write MB/sec

Elapsed time (seconds)

M
B
/s
e
c

Figure 4. Aggregate cluster I/O throughput during TeraByte Sort.

The most striking feature of these graphs is their periodic

nature. During the first pass, SCS distributes records into

1280 1MiB buffers, one for each slice. Since the key range

spanned by each slice is the same, the uniform distribution

of input keys implies that all of the slice buffers fill up at

nearly the same time. This leads to bursts of writing every

few seconds, along with drops in the read rate and CPU

usage until enough buffers have been cleaned to allow the

reader and distributor threads to continue. Dividing a 1TB

file by 1280*40 1MiB buffers yields 18.6, and indeed there

are 18 large peaks and one smaller peak in the throughput

graph of pass 1.

In pass 2, there are 31 peaks in the I/O throughput graph of

Figure 4, corresponding to the 32 slices sorted by each

node. The first read peak is wider than the others because it

includes reading the first two slices. The high and low

limits of the pass 2 graphs appear to converge towards an

intermediate value as time advances. This is an artifact of

how data from the nodes are combined. All nodes do

approximately the same amount of work at approximately

the same rate. Initially, their measured performance

variations are in phase. After running for a while, however,

the nodes drift out of phase and their aggregate

performance measures begin to show interference effects,

attenuating the apparent variation in throughput and CPU

usage.

To confirm that the 1TB output file was sorted, a parallel

validation program read the output and verified that records

had non-decreasing keys. The program also verified that no

records were corrupted, using record and file checksums.

The validation program ran at a sustained rate of over

14GB/sec, as shown in Figure 6. This rate agrees with what

was measured independently using raw I/O, establishing

that GPFS can drive the disks to their throughput limit.

Minute Sort Performance Analysis

SCS sorted a 125GB input file in 58.7 seconds, establishing

a new record for Minute Sort. This file would have fit in the

aggregate memory of the 40 nodes in the sort cluster. A

single-pass sort program could have avoided disk I/O to

temporary files by shipping records by slice directly to

buffers in their destination nodes. However, as the hardware

was configured, the fastest way to move data between

nodes was to write data to disk on the source node and then

read it on the target. Although a one-pass algorithm would

have been possible for Minute Sort, its performance would

have been worse than SCS on the cluster available at SC04.

Thus, the same two-pass program configured with the same

buffer sizes was used. Sorting 125GB with SCS is a 1/8

scale version of sorting 1TB; instead of 1280 slices, there

are 160. SCS was able to sort 12.5% of a terabyte in 13.4%

of the time it took to sort the terabyte. The increase is due to

the fixed 6 second program startup latency.

Figure 7 shows disk throughput and CPU usage during the

Figure 7. Minute Sort aggregate I/O throughput and cluster CPU usage.

0

5000

10000

15000

0 10 20 30 40 50 60

0

20

40

60

80

100

Read

Write

CPU

C
P
U
 b
u
s
y
 %

M
B
/s
e
c

Elapsed time (seconds)

Figure 6. Aggregate read throughput of parallel

validation program.

0

5000

10000

15000

0 20 40 60 80

 Elapsed time (seconds)

 M
B
/s
e
c

Minute Sort run. Since there are only 160 slices, SCS has

enough buffers available to smooth out processing during

its first pass. Unlike the TeraByte Sort run, during Minute

Sort the reader and distributor threads can continue even

while the writer threads write a batch of buffers to the

temporary files. Thus, the throughput graphs during pass 1

are very smooth, with none of the periodic oscillations

observed during the TeraByte Sort run. The write

throughput during pass 1 just looks like a time-shifted copy

of the read throughput. However, since there are only 4

slices processed by each node during the second pass, there

is significant “lumpiness” in that part of the throughput

graph. Performance of pass 2 would have been somewhat

better with more and smaller slices, because the

unoverlapped writing of the last output slice would have

been shorter.

Throughout most of pass 1 of Minute Sort, the sort cluster

drove the I/O subsystem to its limiting throughput of

14GB/sec. In pass 2, there were intervals where CPU was

the bottleneck, and other intervals where I/O throughput

was the limiting resource.

Discussion

As always seems to be the case with large sort benchmarks,

the hardware was available for too brief a time to

adequately tune the system. In hindsight, making more of

the 4GiB of RAM on each node available to SCS

undoubtedly would have smoothed out the performance of

pass 1 of the TeraByte Sort, and probably would have sped

it up as well. The Minute Sort run did have adequate

buffering in pass 1, and Figure 7 shows its smooth I/O

throughput. Excluding startup latency, pass 1 accounted for

50% of the running time of the TeraByte Sort, but only 42%

of the running time of the Minute Sort, suggesting how

much the running time of TeraByte Sort might have

improved with more buffering.

The startup latency of 6 seconds for 40 nodes accounts for

10% of the time budget of Minute Sort. This is a clear

opportunity for optimization. Others have built highly-

tuned remote execution services that can start programs in

mere fractions of a second [12]. Minute Sort could certainly

benefit from the techniques that were vital to sub-second

Datamation Sort implementations.

Pass 2 of SCS is frequently CPU-bound. This shows up

clearly in Figure 7, and is visible in the detailed per-node

CPU measurements for the TeraByte Sort, although not in

the aggregated CPU usage graph of Figure 5 due to the

interference effects described previously. Part of the reason

for this is the use of relatively slow (1.3GHz) processors,

but program structure is also partially to blame. SCS uses

standard X/Open read and write system calls to interface to

the file system; in GPFS these by default copy data between

the buffer in the program’s address space and I/O buffers in

kernel memory. The use of direct I/O would have

eliminated these data copies and freed up considerable CPU

resources. Direct I/O complicates the structure of the SCS

program due to the requirement to handle records whose

size does not divide evenly into the file system block size

and the need to explicitly manage block prefetching and

write behind.

SCS set new records in two sorting categories: Indy Minute

Sort and Indy TeraByte Sort. The time for TeraByte Sort

was a factor of 2.4 times better than the previous record, set

six years earlier [16]. This is a compound growth rate of

only 16% per year, much lower than other growth rates

typically associated with computers. This reflects more on

the difficulty of obtaining a large system for running sort

benchmarks than on any fundamental factor. Also, the new

TeraByte Sort record used less than one tenth the number of

nodes of the former record. The SCS Minute Sort record is

a factor of 3.7 better than the prior record, set just last year

[11]. Given adequate interconnection bandwidth and

appropriate software, clusters are probably easier to scale

than large SMP machines.

Aside from increasing the node count, the most

straightforward way to extend the sort records described

here would be to use a one-pass rather than a two-pass sort

algorithm. This requires enough cluster memory to buffer

the entire input file, plus enough interconnection bandwidth

between nodes so they can transfer slice buffers directly to

other nodes. Existing technologies such as Infiniband or 10-

gigabit Ethernet are powerful enough to accomplish this; all

that is required are the resources to build the right cluster

and the will to run sort benchmarks on it.

References

[1] Anon., Et-Al. (1985). "A Measure of Transaction Processing Power.” Datamation. V.31(7): pp. 112-118. Also in

Readings in Database Systems, M.J. Stonebraker ed., Morgan Kaufmann, San Mateo, 1989.

[2] Agarwal, R.C. "A Super Scalar Sort Algorithm for RISC Processors." ACM SIGMOD '96, pp. 240-246, June 1996.

[3] Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., Culler, D.E., Hellerstein, J.M., and Patterson, D.A. “High-Performance

Sorting on Networks of Workstations." ACM SIGMOD '97, Tucson, Arizona, May, 1997. Available at

http://now.cs.berkeley.edu/NowSort/nowSort.ps.

[4] Gropp, W., Lusk, E., Doss, N., and Skjellum, A. “A High-Performance, Portable Implementation of the MPI Message

Passing Interface Standard,” Parallel Computing V.22(6): pp.789-828, Sept. 1996.

[5] http://research.microsoft.com/barc/SortBenchmark/ Sort benchmark home page, maintained by Jim Gray.

[6] http://www-1.ibm.com/servers/storage/disk/ds4000/ds4300/ Description of IBM TotalStorage DS4300 storage subsystem.

[7] http://www.intel.com/design/servers/buildingblocks/SR870BN4/ Description of dual Itanium2 nodes used by SCS.

[8] http://www.ordinal.com/ Home page of Ordinal Corp., whose NSORT program holds the records for the Daytona

versions of Minute Sort and Terabyte Sort.

[9] http://www.sandia.gov/LabNews/LN11-20-98/sort_story.htm “Sandia and Compaq Computer Corp. team together to set

world record in large database sorting.” Description of Terabyte Sort at Sandia Lab on 11/20/98 in “under 50 minutes.”

[10] Nyberg, C., Barclay, T., Cvetanovic, Z., Gray, J., and Lomet, D. "AlphaSort: A Cache-Sensitive Parallel External Sort."

VLDB Journal 4(4), pp. 603-627 (1995). Available at http://research.microsoft.com/barc/SortBenchmark/AlphaSort.rtf.

[11] Nyberg, C., Gray, J., Koester, C. “A Minute with Nsort on a 32P NEC Windows Itanium2 Server.” Available at

http://research.microsoft.com/barc/SortBenchmark/2004_Nsort_Minutesort.pdf.]

[12] Popovici, F., Bent, J., Forney, B., Arpaci-Dusseau, A., and Arpaci-Dusseau, R. “Datamation 2001: A Sorting Odyssey.”

Technical Report CS-TR-2002-1444, University of Wisconsin, August 2002.

[13] Schmuck, F., and Haskin, R. “GPFS: A Shared-Disk File System for Large Computing Clusters.” Proc of the First

Conference on File and Storage Technologies (FAST), March 2002.

[14] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J. MPI: The Complete Reference, The MIT Press,

1995.

[15] Tsukerman, A., "FastSort– An External Sort Using Parallel Processing," Tandem Systems Review, 3(4), Dec. 1986, pp.

57-72.

[16] Wyllie, J. “SPsort: How to Sort a Terabyte Quickly.” Available at

http://research.microsoft.com/barc/SortBenchmark/spsort.pdf

